548 research outputs found

    Local-scale forcing effects on wind flows in an urban environment: Impact of geometrical simplifications

    Get PDF
    Wind flow in urban areas is strongly affected by the urban geometry. In the last decades most of the geometries used to reproduce urban areas, both in wind-tunnel (WT) tests and Computational Fluid Dynamics (CFD) simulations, were simplified compared to reality in order to limit experimental effort and computational costs. However, it is unclear to which extent these geometrical simplifications can affect the reliability of the numerical and experimental results. The goal of this paper is to quantify the deviations caused by geometrical simplifications. The case under study is the district of Livorno city (Italy), called \ue2\u80\u9cQuartiere La Venezia\ue2\u80\u9d. The 3D steady Reynolds-averaged Navier-Stokes (RANS) simulations are solved, first for a single block of the district, then for the whole district. The CFD simulations are validated with WT tests at scale 1:300. Comparisons are made of mean wind velocity profiles between WT tests and CFD simulations, and the agreement is quantified using four validation metrics (FB, NMSE, R and FAC1.3). The results show that the most detailed geometry provides improved performance, especially for wind direction \uce\ub1 = 240\uc2\ub0 (22% difference in terms of FAC1.3)

    Postoperative urinary retention:Risk factors, bladder filling rate and time to catheterization: an observational study as part of a randomized controlled trial

    Get PDF
    Background: Knowledge of risk factors for postoperative urinary retention may guide appropriate and timely urinary catheterization. We aimed to determine independent risk factors for postoperative urinary catheterization in general surgical patients. In addition, we calculated bladder filling rate and assessed the time to spontaneous voiding or catheterization. We used the patients previously determined individual maximum bladder capacity as threshold for urinary catheterization.Methods: Risk factors for urinary catheterization were prospectively determined in 936 general surgical patients. Patients were at least 18 years of age and operated under general or spinal anesthesia without the need for an indwelling urinary catheter. Patients measured their maximum bladder capacity preoperatively at home, by voiding in a calibrated bowl after a strong urge that could no longer be ignored. Postoperatively, bladder volumes were assessed hourly with ultrasound. When patients reached their maximum bladder capacity and were unable to void, they were catheterized by the nursing staff. Bladder filling rate and time to catheterization were determined.Results: Spinal anesthesia was the main independent modifiable risk factor for urinary catheterization (hyperbaric bupivacaine, relative risk 8.1, articaine RR 3.1). Unmodifiable risk factors were a maximum bladder capacity &lt;500 mL (RR 6.7), duration of surgery &gt;= 60 min (RR 5.5), first scanned bladder volume at the Post Anesthesia Care Unit &gt;= 250mL (RR 2.1), and age &gt;= 60 years (RR 2.0). Urine production varied from 100 to 200 mL/h. Catheterization or spontaneous voiding took place approximately 4 h postoperatively.Conclusion: Spinal anesthesia, longer surgery time, and older age are the main risk factors for urinary retention catheterization. Awareness of these risk factors, regularly bladder volume scanning (at least every 3 h) and using the individual maximum bladder capacity as volume threshold for urinary catheterization may avoid unnecessary urinary catheterization and will prevent bladder overdistention with the attendant risk of lower urinary tract injury.</p

    BRST Cohomology of N=2 Super-Yang-Mills Theory in 4D

    Full text link
    The BRST cohomology of the N=2 supersymmetric Yang-Mills theory in four dimensions is discussed by making use of the twisted version of the N=2 algebra. By the introduction of a set of suitable constant ghosts associated to the generators of N=2, the quantization of the model can be done by taking into account both gauge invariance and supersymmetry. In particular, we show how the twisted N=2 algebra can be used to obtain in a straightforward way the relevant cohomology classes. Moreover, we shall be able to establish a very useful relationship between the local gauge invariant polynomial trϕ2tr\phi^2 and the complete N=2 Yang-Mills action. This important relation can be considered as the first step towards a fully algebraic proof of the one-loop exactness of the N=2 beta function.Comment: 22 pages, LaTeX, final version to appear in Journ. Phys.

    Chronic aspirin treatment affects collagen deposition in non-infarcted myocardium during remodeling after coronary artery ligation in the rat

    Get PDF
    Low-dose aspirin (acetylsalicylic acid; ASA), inhibiting platelet thromboxane production in favor of endothelium formation of prostaglandins, is successfully used as primary or secondary prophylaxis against myocardial infarction. Although prognosis may be improved, effects of long-term ASA treatment on wound healing and cardiac remodeling are not well understood. The aim of the present study was to mimic the clinical situation by inducing myocardial infarction in low-dose ASA (25 mg/kg/day, i.p.) pretreated rats, and to determine effects on plasma eicosanoid levels, cardiac hypertrophy and collagen deposition, and left ventricular function during continued ASA treatment. The effects of this dose were verified to selectively inhibit platelet thromboxane production, and lower plasma levels of thromboxane, but did not affect plasma levels of prostacyclin and prostaglandin E2during the acute inflammatory stage following myocardial infarction. As measured by heart dry weight/body weight, cardiac hypertrophy was not affected by ASA treatment. However, interstitial fibrosis in the spared myocardium as well as perivascular fibrosis, associated with infarction-induced cardiac remodeling, were affected by ASA treatment. Replacement fibrosis in the infarct itself, considered as representing wound healing, was not significantly influenced by ASA treatment. Wall thinning following infarction was not aggravated, nor did treatment influence left ventricular cavity diameter in a relaxed state. Results fromin vitroleft ventricular function measurements showed no effects on left ventricular peak velocity of contraction or relaxation after ASA treatment. In conclusion, although low-dose ASA may not be expected to have anti-inflammatory action, it did influence post-infarct cardiac remodeling by affecting interstitial and perivascular fibrosis. ASA treatment did not have effects onin vitroleft ventricular dysfunction

    L-infinity algebra connections and applications to String- and Chern-Simons n-transport

    Full text link
    We give a generalization of the notion of a Cartan-Ehresmann connection from Lie algebras to L-infinity algebras and use it to study the obstruction theory of lifts through higher String-like extensions of Lie algebras. We find (generalized) Chern-Simons and BF-theory functionals this way and describe aspects of their parallel transport and quantization. It is known that over a D-brane the Kalb-Ramond background field of the string restricts to a 2-bundle with connection (a gerbe) which can be seen as the obstruction to lifting the PU(H)-bundle on the D-brane to a U(H)-bundle. We discuss how this phenomenon generalizes from the ordinary central extension U(1) -> U(H) -> PU(H) to higher categorical central extensions, like the String-extension BU(1) -> String(G) -> G. Here the obstruction to the lift is a 3-bundle with connection (a 2-gerbe): the Chern-Simons 3-bundle classified by the first Pontrjagin class. For G = Spin(n) this obstructs the existence of a String-structure. We discuss how to describe this obstruction problem in terms of Lie n-algebras and their corresponding categorified Cartan-Ehresmann connections. Generalizations even beyond String-extensions are then straightforward. For G = Spin(n) the next step is "Fivebrane structures" whose existence is obstructed by certain generalized Chern-Simons 7-bundles classified by the second Pontrjagin class.Comment: 100 pages, references and clarifications added; correction to section 5.1 and further example to 9.3.1 adde

    White-faced Darter distribution is associated with coniferous forests in Great Britain

    Get PDF
    Abstract 1) Understanding of dragonfly distributions is often geographically comprehensive but less so in ecological terms. 2) White-faced darter (Leucorhinnia dubia) is a lowland peatbog specialist dragonfly which has experienced population declines in Great Britain. White-faced darter are thought to rely on peat-rich pool complexes within woodland but this has not yet been empirically tested. 3) We used dragonfly recording data collected by volunteers of the British Dragonfly Society from 2005 to 2018 to model habitat preference for white-faced darter using species distribution models across Great Britain and, with a more detailed landcover dataset, specifically in the North of Scotland. 4) Across the whole of Great Britain our models used the proportion of coniferous forest within 1km as the most important predictor of habitat suitability but were not able to predict all current populations in England. 5) In the North of Scotland our models were more successful and suggest that habitats characterised by native coniferous forest and areas high potential evapotranspiration represent the most suitable habitat for white-faced darter. 6) We recommend that future white-faced darter monitoring should be expanded to include areas currently poorly surveyed but with high suitability in the North of Scotland. 7) Our results also suggest that white-faced darter management should concentrate on maintaining Sphagnum rich pool complexes and the maintenance and restoration of native forests in which these pool complexes occur
    corecore