254 research outputs found

    Complex imaging of phase domains by deep neural networks

    Get PDF
    The reconstruction of a single-particle image from the modulus of its Fourier transform, by phase-retrieval methods, has been extensively applied in X-ray structural science. Particularly for strong-phase objects, such as the phase domains found inside crystals by Bragg coherent diffraction imaging (BCDI), conventional iteration methods are time consuming and sensitive to their initial guess because of their iterative nature. Here, a deep-neural-network model is presented which gives a fast and accurate estimate of the complex single-particle image in the form of a universal approximator learned from synthetic data. A way to combine the deep-neural-network model with conventional iterative methods is then presented to refine the accuracy of the reconstructed results from the proposed deep-neural-network model. Improved convergence is also demonstrated with experimental BCDI data

    NirA Is an Alternative Nitrite Reductase from Pseudomonas aeruginosa with Potential as an Antivirulence Target.

    Full text link
    The opportunistic pathogen Pseudomonas aeruginosa produces an arsenal of virulence factors causing a wide range of diseases in multiple hosts and is difficult to eradicate due to its intrinsic resistance to antibiotics. With the antibacterial pipeline drying up, antivirulence therapy has become an attractive alternative strategy to the traditional use of antibiotics to treat P. aeruginosa infections. To identify P. aeruginosa genes required for virulence in multiple hosts, a random library of Tn5 mutants in strain PAO1-L was previously screened in vitro for those showing pleiotropic effects in the production of virulence phenotypes. Using this strategy, we identified a Tn5 mutant with an insertion in PA4130 showing reduced levels of a number of virulence traits in vitro Construction of an isogenic mutant in this gene presented results similar to those for the Tn5 mutant. Furthermore, the PA4130 isogenic mutant showed substantial attenuation in disease models of Drosophila melanogaster and Caenorhabditis elegans as well as reduced toxicity in human cell lines. Mice infected with this mutant demonstrated an 80% increased survival rate in acute and agar bead lung infection models. PA4130 codes for a protein with homology to nitrite and sulfite reductases. Overexpression of PA4130 in the presence of the siroheme synthase CysG enabled its purification as a soluble protein. Methyl viologen oxidation assays with purified PA4130 showed that this enzyme is a nitrite reductase operating in a ferredoxin-dependent manner. The preference for nitrite and production of ammonium revealed that PA4130 is an ammonia:ferredoxin nitrite reductase and hence was named NirA.IMPORTANCE The emergence of widespread antimicrobial resistance has led to the need for development of novel therapeutic interventions. Antivirulence strategies are an attractive alternative to classic antimicrobial therapy; however, they require identification of new specific targets which can be exploited in drug discovery programs. The host-specific nature of P. aeruginosa virulence adds complexity to the discovery of these types of targets. Using a sequence of in vitro assays and phylogenetically diverse in vivo disease models, we have identified a PA4130 mutant with reduced production in a number of virulence traits and severe attenuation across all infection models tested. Characterization of PA4130 revealed that it is a ferredoxin-nitrite reductase and hence was named NirA. These results, together with attenuation of nirA mutants in different clinical isolates, high level conservation of its gene product in P. aeruginosa genomes, and the lack of orthologues in human genomes, make NirA an attractive antivirulence target

    Anti-Inflammatory Effects of Thyme Essential Oil in Mice

    Full text link
    Plant essential oils are plant secondary metabolites possessing various pharmacological properties, primarily anti-oxidative, antimicrobial or immunomodulatory ones. The aim of this work was to study the effects of thyme essential oil dietary administration in murine DTH/ CHS reaction, carrageenan paw oedema and TNBS colitis. Thyme essential oil was added to the murine diet at three concentrations (5000, 2500 and 1250 ppm) and fed to Balb/c mice. The extent of ear swelling in DTH/CHS reaction and paw oedema induced by carrageenan application was measured using the Mitutoyo thickness gauge. In the model of TNBS colitis we evaluated the changes in body weight, the colon weight : body weight ratio, bacterial translocation to mesenteric lymph nodes, and macroscopical and histological scores. IL-1β and IL-6 messenger RNA expression in colonic samples of one experimental group were assessed using quantitative real-time reverse transcriptase PCR. Dietary supplementation with 5000 ppm of thyme essential oil significantly decreased paw oedema and ear swelling. This thyme essential oil concentration caused a significant inhibition of total mRNA IL-1β expression in the mouse colon, and markedly decreased the macroscopic and microscopic scores of colitis. On the other hand, the 1250 ppm of thyme essential oil in diet increased ear oedema induced by oxazolone application in mice. Our study indicates that thyme essential oil is able to affect murine experimental inflammatory models depending on the concentration used. It is concluded that the anti-inflammatory effects of thyme essential oil should be interpreted with a caution due to its contradictory, dose-related effects

    Combinational Spinal GAD65 Gene Delivery and Systemic GABA-Mimetic Treatment for Modulation of Spasticity

    Get PDF
    receptor agonist), while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The goal of the present study was to assess if a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase) gene once combined with systemic treatment with tiagabine (GABA uptake inhibitor) will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments.Adult Sprague-Dawley (SD) rats were exposed to transient spinal ischemia (10 min) to induce muscle spasticity. Animals then received lumbar injection of HIV1-CMV-GAD65 lentivirus (LVs) targeting ventral α-motoneuronal pools. At 2–3 weeks after lentivirus delivery animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle) and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only) had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene.These data show that treatment with orally bioavailable GABA-mimetic drugs if combined with spinal-segment-specific GAD65 gene overexpression can represent a novel and highly effective anti-spasticity treatment which is associated with minimal side effects and is restricted to GAD65-gene over-expressing spinal segments

    Ultrafast x-ray diffraction study of melt-front dynamics in polycrystalline thin films

    Get PDF
    Melting is a fundamental process of matter that is still not fully understood at the microscopic level. Here, we use time-resolved x-ray diffraction to examine the ultrafast melting of polycrystalline gold thin films using an optical laser pump followed by a delayed hard x-ray probe pulse. We observe the formation of an intermediate new diffraction peak, which we attribute to material trapped between the solid and melted states, that forms 50 ps after laser excitation and persists beyond 500 ps. The peak width grows rapidly for 50 ps and then narrows distinctly at longer time scales. We attribute this to a melting band originating from the grain boundaries and propagating into the grains. Our observation of this intermediate state has implications for the use of ultrafast lasers for ablation during pulsed laser deposition
    • …
    corecore