697 research outputs found

    Absence of Nonlocal Counter-terms in the Gauge Boson Propagator in Axial -type Gauges

    Get PDF
    We study the two-point function for the gauge boson in the axial-type gauges. We use the exact treatment of the axial gauges recently proposed that is intrinsically compatible with the Lorentz type gauges in the path-integral formulation and has been arrived at from this connection and which is a ``one-vector'' treatment. We find that in this treatment, we can evaluate the two-point functions without imposing any additional interpretation on the axial gauge 1/(n.q)^p-type poles. The calculations are as easy as the other treatments based on other known prescriptions. Unlike the ``uniform-prescription'' /L-M prescription, we note, here, the absence of any non-local divergences in the 2-point proper vertex. We correlate our calculation with that for the Cauchy Principal Value prescription and find from this comparison that the 2-point proper vertex differs from the CPV calculation only by finite terms. For simplicity of treatment, the divergences have been calculated here with n^2>0 and these have a smooth light cone limit.Comment: 17 pages; 3 figures drawn using feyn.st

    Validating Hypothetical Surveys Using Binding Public Referenda: Implications for Stated Preference Valuation

    Get PDF
    This study presents a criterion validity test in which stated choices are compared to subsequent binding referendum votes. The study is distinguished by identical hypothetical and actual choice contexts, and results that show no evidence of hypothetical bias. Results suggest a number of possibilities for amelioration of hypothetical bias.Research Methods/ Statistical Methods,

    Understanding of the Renormalization Program in a mathematically Rigorous Framework and an Intrinsic Mass Scale

    Full text link
    we show there exists a mathematically consistent framework in which the Renormalization Program can be understood in a natural manner. The framework does not require any violations of mathematical rigor usually associated with the Renormalization program. We use the framework of the non-local field theories [these carry a finite mass scale (\Lambda)]and set up a finite perturbative program. We show how this program leads to the perturbation series of the usual renormalization program [except one difference] if the series is restructured .We further show that the comparison becomes possible if there exists a finite mass scale (\Lambda), with certain properties, in the Quantum Field theory [which we take to be the scale present in the nonlocal theory]. We give a way to estimate the scale (\Lambda). We also show that the finite perturbation program differs from the usual renormalization program by a term; which we propose can also be used to put a bound on (\Lambda).Comment: 19 pages, a missing equation added,a reference added and a few typos correcte

    Mapping between Hamiltonians with attractive and repulsive potentials on a lattice

    Full text link
    Through a simple and exact analytical derivation, we show that for a particle on a lattice, there is a one-to-one correspondence between the spectra in the presence of an attractive potential V^\hat{V} and its repulsive counterpart V^-\hat{V}. For a Hermitian potential, this result implies that the number of localized states is the same in both, attractive and repulsive, cases although these states occur above (below) the band-continnum for the repulsive (attractive) case. For a \mP\mT-symmetric potential that is odd under parity, our result implies that in the \mP\mT-unbroken phase, the energy eigenvalues are symmetric around zero, and that the corresponding eigenfunctions are closely related to each other.Comment: 6 pages, 1 figur

    Wilson Loop and the Treatment of Axial Gauge Poles

    Get PDF
    We consider the question of gauge invariance of the Wilson loop in the light of a new treatment of axial gauge propagator proposed recently based on a finite field-dependent BRS (FFBRS) transformation. We remark that as under the FFBRS transformation the vacuum expectation value of a gauge invariant observable remains unchanged, our prescription automatically satisfies the Wilson loop criterion. Further, we give an argument for {\it direct} verification of the invariance of Wilson loop to O(g^4) using the earlier work by Cheng and Tsai. We also note that our prescription preserves the thermal Wilson loop to O(g^2).Comment: 8 pages, LaTex; some typos related to equation (18) correcte

    Superfield approach to symmetry invariance in QED with complex scalar fields

    Full text link
    We show that the Grassmannian independence of the super Lagrangian density, expressed in terms of the superfields defined on a (4, 2)-dimensional supermanifold, is a clear-cut proof for the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST invariance of the corresoponding four (3 + 1)-dimensional (4D) Lagrangian density that describes the interaction between the U(1) gauge field and the charged complex scalar fields. The above 4D field theoretical model is considered on a (4, 2)-dimensional supermanifold parametrized by the ordinary four spacetime variables x^\mu (with \mu = 0, 1, 2, 3) and a pair of Grassmannian variables \theta and \bar\theta (with \theta^2 = \bar\theta^2 = 0, \theta \bar\theta + \bar\theta \theta = 0). Geometrically, the (anti-)BRST invariance is encoded in the translation of the super Lagrangian density along the Grassmannian directions of the above supermanifold such that the outcome of this shift operation is zero.Comment: LaTeX file, 14 pages, minor changes in the title and text, version to appear in ``Pramana - Journal of Physics'

    Absence of Wigner Crystallization in Graphene

    Full text link
    Graphene, a single sheet of graphite, has attracted tremendous attention due to recent experiments which demonstrate that carriers in it are described by massless fermions with linear dispersion. In this note, we consider the possibility of Wigner crystallization in graphene in the absence of external magnetic field. We show that the ratio of potential and kinetic energy is independent of the carrier density, the tuning parameter that usually drives Wigner crystallization and find out that for given material parameters (dielectric constant and Fermi velocity), Wigner crystallization is not possible. We comment on the how these results change in the presence of a strong external magnetic field.Comment: 3 pages, 1 figure,Submitted for PR
    corecore