12 research outputs found

    Centrality dependence of the pseudorapidity density distribution for charged particles in Pb–Pb collisions at √sNN = 5.02 TeV

    Get PDF
    We present the charged-particle pseudorapidity density in Pb–Pb collisions at √sNN = 5.02 TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from −3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0–5%) collisions we find 21 400 ± 1 300, while for the most peripheral (80–90%) we find 230 ± 38. This corresponds to an increase of (27 ± 4)% over the results at √sNN = 2.76 TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The chargedparticle pseudorapidity density of the most central collisions is compared to model calculations — none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies

    Charged-particle multiplicity distributions over a wide pseudorapidity range in proton- proton collisions at √s = 0.9, 7, and 8 TeV

    No full text
    We present the charged-particle multiplicity distributions over a wide pseudorapidity range (−3.4<η<5.0) for pp collisions at √s = 0.9, 7, and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the pseudorapidity coverage of the earlier publications and the high-multiplicity reach. The measurements are compared to results from the CMS experiment and to PYTHIA, PHOJET and EPOS LHC event generators, as well as IP- Glasma calculations
    corecore