1,247 research outputs found
The search for continuous gravitational waves: metric of the multi-detector F-statistic
We develop a general formalism for the parameter-space metric of the
multi-detector F-statistic, which is a matched-filtering detection statistic
for continuous gravitational waves. We find that there exists a whole family of
F-statistic metrics, parametrized by the (unknown) amplitude parameters of the
gravitational wave. The multi-detector metric is shown to be expressible in
terms of noise-weighted averages of single-detector contributions, which
implies that the number of templates required to cover the parameter space does
not scale with the number of detectors. Contrary to using a longer observation
time, combining detectors of similar sensitivity is therefore the
computationally cheapest way to improve the sensitivity of coherent
wide-parameter searches for continuous gravitational waves.
We explicitly compute the F-statistic metric family for signals from isolated
spinning neutron stars, and we numerically evaluate the quality of different
metric approximations in a Monte-Carlo study. The metric predictions are tested
against the measured mismatches and we identify regimes in which the local
metric is no longer a good description of the parameter-space structure.Comment: 20 pages, 15 figures, revtex4; v2: some edits of style and notation,
fixed minor typo
Parameter-space metric of semicoherent searches for continuous gravitational waves
Continuous gravitational-wave (CW) signals such as emitted by spinning
neutron stars are an important target class for current detectors. However, the
enormous computational demand prohibits fully coherent broadband all-sky
searches for prior unknown CW sources over wide ranges of parameter space and
for yearlong observation times. More efficient hierarchical "semicoherent"
search strategies divide the data into segments much shorter than one year,
which are analyzed coherently; then detection statistics from different
segments are combined incoherently. To optimally perform the incoherent
combination, understanding of the underlying parameter-space structure is
requisite. This problem is addressed here by using new coordinates on the
parameter space, which yield the first analytical parameter-space metric for
the incoherent combination step. This semicoherent metric applies to broadband
all-sky surveys (also embedding directed searches at fixed sky position) for
isolated CW sources. Furthermore, the additional metric resolution attained
through the combination of segments is studied. From the search parameters (sky
position, frequency, and frequency derivatives), solely the metric resolution
in the frequency derivatives is found to significantly increase with the number
of segments.Comment: 14 pages, 5 figures (matching Phys.Rev.D version
A nonlinear detection algorithm for periodic signals in gravitational wave detectors
We present an algorithm for the detection of periodic sources of
gravitational waves with interferometric detectors that is based on a special
symmetry of the problem: the contributions to the phase modulation of the
signal from the earth rotation are exactly equal and opposite at any two
instants of time separated by half a sidereal day; the corresponding is true
for the contributions from the earth orbital motion for half a sidereal year,
assuming a circular orbit. The addition of phases through multiplications of
the shifted time series gives a demodulated signal; specific attention is given
to the reduction of noise mixing resulting from these multiplications. We
discuss the statistics of this algorithm for all-sky searches (which include a
parameterization of the source spin-down), in particular its optimal
sensitivity as a function of required computational power. Two specific
examples of all-sky searches (broad-band and narrow-band) are explored
numerically, and their performances are compared with the stack-slide technique
(P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.
On the equation of motion of compact binaries in Post-Newtonian approximation
A third post-Newtonian (3 PN) equation of motion for two spherical compact
stars in a harmonic coordinate has been derived based on the surface integral
approach and the strong field point particle limit. The strong field point
particle limit enables us to incorporate a notion of a self-gravitating regular
star into general relativity. The resulting 3 PN equation of motion is Lorentz
invariant, unambiguous, and conserves an energy of the binary orbital motion.Comment: 7 pages, no figure. Proceedings of the 5th Amaldi Conference on
Gravitational Waves, Pisa, Italy, 6-11 July 200
A skeleton approximate solution of the Einstein field equations for multiple black-hole systems
An approximate analytical and non-linear solution of the Einstein field
equations is derived for a system of multiple non-rotating black holes. The
associated space-time has the same asymptotic structure as the Brill-Lindquist
initial data solution for multiple black holes. The system admits an
Arnowitt-Deser-Misner (ADM) Hamiltonian that can particularly evolve the
Brill-Lindquist solution over finite time intervals. The gravitational field of
this model may properly be referred to as a skeleton approximate solution of
the Einstein field equations. The approximation is based on a conformally flat
truncation, which excludes gravitational radiation, as well as a removal of
some additional gravitational field energy. After these two simplifications,
only source terms proportional to Dirac delta distributions remain in the
constraint equations. The skeleton Hamiltonian is exact in the test-body limit,
it leads to the Einsteinian dynamics up to the first post-Newtonian
approximation, and in the time-symmetric limit it gives the energy of the
Brill-Lindquist solution exactly. The skeleton model for binary systems may be
regarded as a kind of analytical counterpart to the numerical treatment of
orbiting Misner-Lindquist binary black holes proposed by Gourgoulhon,
Grandclement, and Bonazzola, even if they actually treat the corotating case.
Along circular orbits, the two-black-hole skeleton solution is quasi-stationary
and it fulfills the important property of equality of Komar and ADM masses.
Explicit calculations for the determination of the last stable circular orbit
of the binary system are performed up to the tenth post-Newtonian order within
the skeleton model.Comment: 15 pages, 1 figure, submitted to Phys. Rev. D, 3 references added,
minor correction
Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search
We develop a set of data analysis tools for a realistic all-sky search for
continuous gravitational-wave signals. The methods that we present apply to
data from both the resonant bar detectors that are currently in operation and
the laser interferometric detectors that are in the final stages of
construction and commissioning. We show that with our techniques we shall be
able to perform an all-sky 2-day long coherent search of the narrow-band data
from the resonant bar EXPLORER with no loss of signals with the dimensionless
amplitude greater than .Comment: REVTeX, 26 pages, 1 figure, submitted to Phys. Rev.
The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part
Post-Newtonian expansions of the Brill-Lindquist and Misner-Lindquist
solutions of the time-symmetric two-black-hole initial value problem are
derived. The static Hamiltonians related to the expanded solutions, after
identifying the bare masses in both solutions, are found to differ from each
other at the third post-Newtonian approximation. By shifting the position
variables of the black holes the post-Newtonian expansions of the three metrics
can be made to coincide up to the fifth post-Newtonian order resulting in
identical static Hamiltonians up the third post-Newtonian approximation. The
calculations shed light on previously performed binary point-mass calculations
at the third post-Newtonian approximation.Comment: LaTeX, 9 pages, to be submitted to Physical Review
On bare masses in time-symmetric initial-value solutions for two black holes
The Brill-Lindquist time-symmetric initial-value solution for two uncharged
black holes is rederived using the Hamiltonian constraint equation with Dirac
delta distributions as a source for the binary black-hole field. The bare
masses of the Brill-Lindquist black holes are introduced in a way which is
applied, after straightforward modification, to the Misner-Linquist binary
black-hole solution.Comment: LaTeX, 4 page
- …
