445,410 research outputs found

    A Circular Statistical Method for Extracting Rotation Measures

    Get PDF
    We propose a new method for the extraction of Rotation Measure from spectral polarization data. The method is based on maximum likelihood analysis and takes into account the circular nature of the polarization data. The method is unbiased and statistically more efficient than the standard χ2\chi^2 procedure. We also find that the method is computationally much faster than the standard χ2\chi^2 procedure if the number of data points are very large.Comment: 17 pages, 5 figure

    Study of D0 decays into K̄0 and K̄*0

    Get PDF
    complete author list: Procario M.; Yang S.; Akerib D.; Barish B.; Chadha M.; Chan S.; Cowen D.; Eigen G.; Miller J.; Urheim J.; Weinstein A.; Acosta D.; Athanas M.; Masek G.; Ong B.; Paar H.; Sivertz M.; Bean A.; Gronberg J.; Kutschke R.; Menary S.; Morrison R.; Nakanishi S.; Nelson H.; Nelson T.; Richman J.; Tajima H.; Schmidt D.; Sperka D.; Witherell M.; Ballest R.; Daoudi M.; Ford W.; Johnson D.; Lingel K.; Lohner M.; Rankin P.; Smith J.; Alexander J.; Bebek C.; Berkelman K.; Besson D.; Browder T.; Cassel D.; Cho H.; Coffman D.; Drell P.; Ehrlich R.; Galik R.; Garcia-Sciveres M.; Geiser B.; Gittelman B.; Gray S.; Hartill D.; Heltsley B.; Honscheid K.; Jones C.; Jones S.; Kandaswamy J.; Katayama N.; Kim P.; Kreinick D.; Ludwig G.; Masui J.; Mevissen J.; Mistry N.; Ng C.; Nordberg E.; Ogg M.; O'Grady C.; Patterson J.; Peterson D.; Riley D.; Sapper M.; Selen M.; Worden H.; Worris M.; Würthwein F.; Avery P.; Freyberger A.; Rodriquez R.; Stephens R.; Yelton J.; Cinabro D.; Henderson S.; Kinoshita K.; Liu T.; Saulnier M.; Wilson R.; Yamamoto H.; Sadoff A.; Ammar R.; Ball S.; Baringer P.; Coppage D.; Copty N.; Davis R.; Hancock N.; Kelly M.; Kwak N.; Lam H.; Kubota Y.; Lattery M.; Nelson J.; Patton S.; Perticone D.; Poling R.; Savinov V.; Schrenk S.; Wang R.; Alam M.; Kim I.; Nemati B.; O'Neill J.; Romero V.; Severini H.; Sun C.; Zoeller M.; Crawford G.; Fulton R.; Gan K.; Kagan H.; Kass R.; Lee J.; Malchow R.; Morrow F.; Skovpen Y.; Sung M.; White C.; Whitmore J.; Wilson P.; Butler F.; Fu X.; Kalbfleisch G.; Lambrecht M.; Ross W.; Skubic P.; Snow J.; Wang P.; Wood M.; Bortoletto D.; Brown D.; Dominick J.; Mcilwain R.; Miao T.; Miller D.; Modesitt M.; Schaffner S.; Shibata E.; Shipsey I.; Wang P.; Battle M.; Ernst J.; Kroha H.; Roberts S.; Sparks K.; Thorndike E.; Wang C.; Sanghera S.; Skwarnicki T.; Stroynowski R.; Artuso M.; Goldberg M.; Horwitz N.; Kennett R.; Moneti G.; Muheim F.; Playfer S.; Rozen Y.; Rubin P.; Stone S.; Thulasidas M.; Zhu G.; Barnes A.; Bartelt J.; Csorna S.; Egyed Z.; Jain V.; Sheldon P.; Egyed Z.; Csorna S.; Sheldon P.; Jain V.; Zhu G.; Thulasidas M.; Bartelt J.; Barnes A.; Stone S.; Procario M.</p

    Strain energy calculations of hexagonal boron nanotubes: An ab-initio approach

    Full text link
    An ab initio calculations have been carried out for examining the curvature effect of small diameter hexagonal boron nanotubes. The considered conformations of boron nanotubes are namely armchair (3,3), zigzag (5,0) and chiral (4,2), and consist of 12, 20, and 56 atoms, respectively. The strain energy is evaluated in order to examine the curvature effect. It is found that the strain energy of hexagonal BNT strongly depends upon the radius, whereas the strain energy of triangular BNTs depends on both radius and chirality.Comment: 7 pages, 4 figure

    Composite fermion wave functions as conformal field theory correlators

    Full text link
    It is known that a subset of fractional quantum Hall wave functions has been expressed as conformal field theory (CFT) correlators, notably the Laughlin wave function at filling factor ν=1/m\nu=1/m (mm odd) and its quasiholes, and the Pfaffian wave function at ν=1/2\nu=1/2 and its quasiholes. We develop a general scheme for constructing composite-fermion (CF) wave functions from conformal field theory. Quasiparticles at ν=1/m\nu=1/m are created by inserting anyonic vertex operators, P1m(z)P_{\frac{1}{m}}(z), that replace a subset of the electron operators in the correlator. The one-quasiparticle wave function is identical to the corresponding CF wave function, and the two-quasiparticle wave function has correct fractional charge and statistics and is numerically almost identical to the corresponding CF wave function. We further show how to exactly represent the CF wavefunctions in the Jain series ν=s/(2sp+1)\nu = s/(2sp+1) as the CFT correlators of a new type of fermionic vertex operators, Vp,n(z)V_{p,n}(z), constructed from nn free compactified bosons; these operators provide the CFT representation of composite fermions carrying 2p2p flux quanta in the nthn^{\rm th} CF Landau level. We also construct the corresponding quasiparticle- and quasihole operators and argue that they have the expected fractional charge and statistics. For filling fractions 2/5 and 3/7 we show that the chiral CFTs that describe the bulk wave functions are identical to those given by Wen's general classification of quantum Hall states in terms of KK-matrices and ll- and tt-vectors, and we propose that to be generally true. Our results suggest a general procedure for constructing quasiparticle wave functions for other fractional Hall states, as well as for constructing ground states at filling fractions not contained in the principal Jain series.Comment: 26 pages, 3 figure

    Observation of IV(4=S) decays into non-=BBA final states containing I mesons

    Get PDF
    complete author list: Alexander J.; Artuso M.; Bebek C.; Berkelman K.; Cassel D.; Cheu E.; Coffman D.; Crawford G.; DeWire J.; Drell P.; Ehrlich R.; Galik R.; Gittelman B.; Gray S.; Halling A.; Hartill D.; Heltsley B.; Kandaswamy J.; Katayama N.; Kreinick D.; Lewis J.; Mistry N.; Mueller J.; Namjoshi R.; Nandi S.; Nordberg E.; Grady C.; Peterson D.; Pisharody M.; Riley D.; Sapper M.; Silverman A.; Stone S.; Worden H.; Worris M.; Sadoff A.; Avery P.; Besson D.; Garren L.; Yelton J.; Bowcock T.; Kinoshita K.; Pipkin F.; Procario M.; Wilson R.; Wolinski J.; Xiao D.; Ammar R.; Baringer P.; Coppage D.; Haas P.; Lam H.; Jawahery A.; Park C.; Kubota Y.; Nelson J.; Perticone D.; Poling R.; Fulton R.; Jensen T.; Johnson D.; Kagan H.; Kass R.; Morrow F.; Whitmore J.; Wilson P.; Chen W.; Dominick J.; McIlwain R.; Miller D.; Ng C.; Schaffner S.; Shibata E.; Yao W.; Sparks K.; Thorndike E.; Wang C.; Alam M.; Kim I.; Li W.; Lou X.; Sun C.; Wang P.; Zoeller M.; Bortoletto D.; Goldberg M.; Horwitz N.; Jain V.; Mestayer M.; Moneti G.; Sharma V.; Shipsey I.; Skwarnicki T.; Thulasidas M.; Csorna S.; Letson T.; Alexander J.</p
    corecore