445,410 research outputs found
A Circular Statistical Method for Extracting Rotation Measures
We propose a new method for the extraction of Rotation Measure from spectral
polarization data. The method is based on maximum likelihood analysis and takes
into account the circular nature of the polarization data. The method is
unbiased and statistically more efficient than the standard procedure.
We also find that the method is computationally much faster than the standard
procedure if the number of data points are very large.Comment: 17 pages, 5 figure
Study of D0 decays into K̄0 and K̄*0
complete author list: Procario M.; Yang S.; Akerib D.; Barish B.; Chadha M.; Chan S.; Cowen D.; Eigen G.; Miller J.; Urheim J.; Weinstein A.; Acosta D.; Athanas M.; Masek G.; Ong B.; Paar H.; Sivertz M.; Bean A.; Gronberg J.; Kutschke R.; Menary S.; Morrison R.; Nakanishi S.; Nelson H.; Nelson T.; Richman J.; Tajima H.; Schmidt D.; Sperka D.; Witherell M.; Ballest R.; Daoudi M.; Ford W.; Johnson D.; Lingel K.; Lohner M.; Rankin P.; Smith J.; Alexander J.; Bebek C.; Berkelman K.; Besson D.; Browder T.; Cassel D.; Cho H.; Coffman D.; Drell P.; Ehrlich R.; Galik R.; Garcia-Sciveres M.; Geiser B.; Gittelman B.; Gray S.; Hartill D.; Heltsley B.; Honscheid K.; Jones C.; Jones S.; Kandaswamy J.; Katayama N.; Kim P.; Kreinick D.; Ludwig G.; Masui J.; Mevissen J.; Mistry N.; Ng C.; Nordberg E.; Ogg M.; O'Grady C.; Patterson J.; Peterson D.; Riley D.; Sapper M.; Selen M.; Worden H.; Worris M.; Würthwein F.; Avery P.; Freyberger A.; Rodriquez R.; Stephens R.; Yelton J.; Cinabro D.; Henderson S.; Kinoshita K.; Liu T.; Saulnier M.; Wilson R.; Yamamoto H.; Sadoff A.; Ammar R.; Ball S.; Baringer P.; Coppage D.; Copty N.; Davis R.; Hancock N.; Kelly M.; Kwak N.; Lam H.; Kubota Y.; Lattery M.; Nelson J.; Patton S.; Perticone D.; Poling R.; Savinov V.; Schrenk S.; Wang R.; Alam M.; Kim I.; Nemati B.; O'Neill J.; Romero V.; Severini H.; Sun C.; Zoeller M.; Crawford G.; Fulton R.; Gan K.; Kagan H.; Kass R.; Lee J.; Malchow R.; Morrow F.; Skovpen Y.; Sung M.; White C.; Whitmore J.; Wilson P.; Butler F.; Fu X.; Kalbfleisch G.; Lambrecht M.; Ross W.; Skubic P.; Snow J.; Wang P.; Wood M.; Bortoletto D.; Brown D.; Dominick J.; Mcilwain R.; Miao T.; Miller D.; Modesitt M.; Schaffner S.; Shibata E.; Shipsey I.; Wang P.; Battle M.; Ernst J.; Kroha H.; Roberts S.; Sparks K.; Thorndike E.; Wang C.; Sanghera S.; Skwarnicki T.; Stroynowski R.; Artuso M.; Goldberg M.; Horwitz N.; Kennett R.; Moneti G.; Muheim F.; Playfer S.; Rozen Y.; Rubin P.; Stone S.; Thulasidas M.; Zhu G.; Barnes A.; Bartelt J.; Csorna S.; Egyed Z.; Jain V.; Sheldon P.; Egyed Z.; Csorna S.; Sheldon P.; Jain V.; Zhu G.; Thulasidas M.; Bartelt J.; Barnes A.; Stone S.; Procario M.</p
Strain energy calculations of hexagonal boron nanotubes: An ab-initio approach
An ab initio calculations have been carried out for examining the curvature
effect of small diameter hexagonal boron nanotubes. The considered
conformations of boron nanotubes are namely armchair (3,3), zigzag (5,0) and
chiral (4,2), and consist of 12, 20, and 56 atoms, respectively. The strain
energy is evaluated in order to examine the curvature effect. It is found that
the strain energy of hexagonal BNT strongly depends upon the radius, whereas
the strain energy of triangular BNTs depends on both radius and chirality.Comment: 7 pages, 4 figure
Composite fermion wave functions as conformal field theory correlators
It is known that a subset of fractional quantum Hall wave functions has been
expressed as conformal field theory (CFT) correlators, notably the Laughlin
wave function at filling factor ( odd) and its quasiholes, and the
Pfaffian wave function at and its quasiholes. We develop a general
scheme for constructing composite-fermion (CF) wave functions from conformal
field theory. Quasiparticles at are created by inserting anyonic
vertex operators, , that replace a subset of the electron
operators in the correlator. The one-quasiparticle wave function is identical
to the corresponding CF wave function, and the two-quasiparticle wave function
has correct fractional charge and statistics and is numerically almost
identical to the corresponding CF wave function. We further show how to exactly
represent the CF wavefunctions in the Jain series as the CFT
correlators of a new type of fermionic vertex operators, ,
constructed from free compactified bosons; these operators provide the CFT
representation of composite fermions carrying flux quanta in the CF Landau level. We also construct the corresponding quasiparticle- and
quasihole operators and argue that they have the expected fractional charge and
statistics. For filling fractions 2/5 and 3/7 we show that the chiral CFTs that
describe the bulk wave functions are identical to those given by Wen's general
classification of quantum Hall states in terms of -matrices and - and
-vectors, and we propose that to be generally true. Our results suggest a
general procedure for constructing quasiparticle wave functions for other
fractional Hall states, as well as for constructing ground states at filling
fractions not contained in the principal Jain series.Comment: 26 pages, 3 figure
Observation of IV(4=S) decays into non-=BBA final states containing I mesons
complete author list: Alexander J.; Artuso M.; Bebek C.; Berkelman K.; Cassel D.; Cheu E.; Coffman D.; Crawford G.; DeWire J.; Drell P.; Ehrlich R.; Galik R.; Gittelman B.; Gray S.; Halling A.; Hartill D.; Heltsley B.; Kandaswamy J.; Katayama N.; Kreinick D.; Lewis J.; Mistry N.; Mueller J.; Namjoshi R.; Nandi S.; Nordberg E.; Grady C.; Peterson D.; Pisharody M.; Riley D.; Sapper M.; Silverman A.; Stone S.; Worden H.; Worris M.; Sadoff A.; Avery P.; Besson D.; Garren L.; Yelton J.; Bowcock T.; Kinoshita K.; Pipkin F.; Procario M.; Wilson R.; Wolinski J.; Xiao D.; Ammar R.; Baringer P.; Coppage D.; Haas P.; Lam H.; Jawahery A.; Park C.; Kubota Y.; Nelson J.; Perticone D.; Poling R.; Fulton R.; Jensen T.; Johnson D.; Kagan H.; Kass R.; Morrow F.; Whitmore J.; Wilson P.; Chen W.; Dominick J.; McIlwain R.; Miller D.; Ng C.; Schaffner S.; Shibata E.; Yao W.; Sparks K.; Thorndike E.; Wang C.; Alam M.; Kim I.; Li W.; Lou X.; Sun C.; Wang P.; Zoeller M.; Bortoletto D.; Goldberg M.; Horwitz N.; Jain V.; Mestayer M.; Moneti G.; Sharma V.; Shipsey I.; Skwarnicki T.; Thulasidas M.; Csorna S.; Letson T.; Alexander J.</p
- …