160,423 research outputs found

    Dielectric behavior of oblate spheroidal particles: Application to erythrocytes suspensions

    Full text link
    We have investigated the effect of particle shape on the eletrorotation (ER) spectrum of living cells suspensions. In particular, we consider coated oblate spheroidal particles and present a theoretical study of ER based on the spectral representation theory. Analytic expressions for the characteristic frequency as well as the dispersion strength can be obtained, thus simplifying the fitting of experimental data on oblate spheroidal cells that abound in the literature. From the theoretical analysis, we find that the cell shape, coating as well as material parameters can change the ER spectrum. We demonstrate good agreement between our theoretical predictions and experimental data on human erthrocytes suspensions.Comment: RevTex; 5 eps figure

    Many-body dipole-induced dipole model for electrorheological fluids

    Full text link
    Theoretical investigations on electrorheological (ER) fluids usually rely on computer simulations. An initial approach for these studies would be the point-dipole (PD) approximation, which is known to err considerably when the particles approach and finally touch due to many-body and multipolar interactions. Thus various work attempted to go beyond the PD model. Being beyond the PD model, previous attempts have been restricted to either local-field effects only or multipolar effects only, but not both. For instance, we recently proposed a dipole-induced-dipole (DID) model which is shown to be both more accurate than the PD model and easy to use. This work is necessary because the many-body (local-field) effect is included to put forth the many-body DID model. The results show that the multipolar interactions can indeed be dominant over the dipole interaction, while the local-field effect may yield an important correction.Comment: RevTeX, 3 eps figure

    Nonlinear ac responses of electro-magnetorheological fluids

    Full text link
    We apply a Langevin model to investigate the nonlinear ac responses of electro-magnetorheological (ERMR) fluids under the application of two crossed dc magnetic (z axis) and electric (x axis) fields and a probing ac sinusoidal magnetic field. We focus on the influence of the magnetic fields which can yield nonlinear behaviors inside the system due to the particles with a permanent magnetic dipole moment. Based on a perturbation approach, we extract the harmonics of the magnetic field and orientational magnetization analytically. To this end, we find that the harmonics are sensitive to the degree of anisotropy of the structure as well as the field frequency. Thus, it is possible to real-time monitor the structure transformation of ERMR fluids by detecting the nonlinear ac responses.Comment: 21 pages, 4 figure

    The apparent shape of the "Str\"omgren sphere'' around the highest-redshift QSOs with Gunn-Peterson troughs

    Full text link
    Although the highest redshift QSOs (z>6.1) are embedded in a significantly neutral background universe (mass-averaged neutral hydrogen fraction >1%) as suggested by the Gunn-Peterson absorption troughs in their spectra, the intergalactic medium in their vicinity is highly ionized. The highly ionized region is generally idealized as spherical and called the Str\"omgren sphere. In this paper, by combining the expected evolution of the Str\"omgren sphere with the rule that the speed of light is finite, we illustrate the apparent shape of the ionization fronts around the highest redshift QSOs and its evolution, which depends on the age, luminosity evolution, and environment of the QSO (e.g., the hydrogen reionization history). The apparent shape may systematically deviate from a spherical shape, unless the QSO age is significantly long compared to the hydrogen recombination process within the ionization front and the QSO luminosity evolution is significantly slow. Effects of anisotropy of QSO emission are also discussed. The apparent shape of the "Str\"omgren sphere'' may be directly mapped by transmitted spectra of background sources behind or inside the ionized regions or by surveys of the hyperfine transition (21cm) line emission of neutral hydrogen.Comment: 7 pages, 5 figures; discussion on effects of anisotropy of QSO emission expanded; ApJ in pres

    Induced interactions in dilute atomic gases and liquid helium mixtures

    Full text link
    In dilute mixtures of two atomic gases, interactions between two minority atoms acquire a contribution due to interaction with the majority component. Using thermodynamic arguments, we derive expressions for this induced interaction for both fermions and bosons for arbitrary strength of the interaction between the two components. Implications of the work for the theory of dilute solutions of 3^3He in liquid 4^4He are discussed.Comment: 7 pages, 1 figure, NORDITA-2012-3

    Many-body Green's function theory of ferromagnetic Heisenberg systems with single-ion anisotropies in more than one direction

    Full text link
    The behaviour of ferromagnetic systems with single-ion anisotropies in more than one direction is investigated with many-body Green's function theory generalizing earlier work with uniaxial anisotropies only. It turns out to be of advantage to construct Green's functions in terms of the spin operators S^x, S^y and S^z, instead of the commonly used S^+,S^- and S^z operators. The exchange energy terms are decoupled by RPA and the single-ion anisotropy terms by a generalization of the Anderson-Callen decoupling. We stress that in the derivation of the formalism none of the three spatial axes is special, so that one is always able to select a reference direction along which a magnetization component is not zero. Analytical expressions are obtained for all three components of the magnetization and the expectation values , and for any spin quantum number S. The formalism considers both in-plane and out-of-plane anisotropies. Numerical calculations illustrate the behaviour of the magnetization for 3-dimensional and 2-dimensional systems for various parameters. In the 2-dimensional case, the magnetic dipole-dipole coupling is included, and a comparison is made between in-plane and out-of-plane anisotropies.Comment: 16 pages, 8 figures, missing figures adde
    corecore