359 research outputs found

    Dynamic binding of driven interfaces in coupled ultrathin ferromagnetic layers

    Full text link
    We demonstrate experimentally dynamic interface binding in a system consisting of two coupled ferromagnetic layers. While domain walls in each layer have different velocity-field responses, for two broad ranges of the driving field, H, walls in the two layers are bound and move at a common velocity. The bound states have their own velocity-field response and arise when the isolated wall velocities in each layer are close, a condition which always occurs as H->0. Several features of the bound states are reproduced using a one dimensional model, illustrating their general nature.Comment: 5 pages, 4 figures, to be published in Physical Review Letter

    Clustering Memes in Social Media

    Full text link
    The increasing pervasiveness of social media creates new opportunities to study human social behavior, while challenging our capability to analyze their massive data streams. One of the emerging tasks is to distinguish between different kinds of activities, for example engineered misinformation campaigns versus spontaneous communication. Such detection problems require a formal definition of meme, or unit of information that can spread from person to person through the social network. Once a meme is identified, supervised learning methods can be applied to classify different types of communication. The appropriate granularity of a meme, however, is hardly captured from existing entities such as tags and keywords. Here we present a framework for the novel task of detecting memes by clustering messages from large streams of social data. We evaluate various similarity measures that leverage content, metadata, network features, and their combinations. We also explore the idea of pre-clustering on the basis of existing entities. A systematic evaluation is carried out using a manually curated dataset as ground truth. Our analysis shows that pre-clustering and a combination of heterogeneous features yield the best trade-off between number of clusters and their quality, demonstrating that a simple combination based on pairwise maximization of similarity is as effective as a non-trivial optimization of parameters. Our approach is fully automatic, unsupervised, and scalable for real-time detection of memes in streaming data.Comment: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM'13), 201

    Model of bound interface dynamics for coupled magnetic domain walls

    Full text link
    A domain wall in a ferromagnetic system will move under the action of an external magnetic field. Ultrathin Co layers sandwiched between Pt have been shown to be a suitable experimental realization of a weakly disordered 2D medium in which to study the dynamics of 1D interfaces (magnetic domain walls). The behavior of these systems is encapsulated in the velocity-field response v(H) of the domain walls. In a recent paper [P.J. Metaxas et al., Phys. Rev. Lett. 104, 237206 (2010)] we studied the effect of ferromagnetic coupling between two such ultrathin layers, each exhibiting different v(H) characteristics. The main result was the existence of bound states over finite-width field ranges, wherein walls in the two layers moved together at the same speed. Here, we discuss in detail the theory of domain wall dynamics in coupled systems. In particular, we show that a bound creep state is expected for vanishing H and we give the analytical, parameter free expression for its velocity which agrees well with experimental results.Comment: 9 page

    Epithelial chimerism in the oral mucosa after human hematopoietic cell transplantation

    Get PDF

    Conference on a Disk: A Successful Experiment in Hypermedia Publishing (Extended Abstract)

    Get PDF
    Academic conferences are a long-standing and effective form of multimedia communication. Conference participants can transmit and recieve information through sight, speech, gesture, text, and touch. This same-time, same-place communication is sufficiently valuable to justify large investments in time and travel funds. Printed conference proceedings are attempts to recapture the value of a life conference, but they are limited by a fragmented and inefficient approach to the problem. We addressed this problem in the multimedia proceedings of the DAGS\u2792 conference. The recently published CD-ROM delibers text, graphic, audio, and video information as an integrated whole, with extensive provisions for random access and hypermedia linking. We belive that this project provides a model for future conference publications and highlights some of the research issues that must be resolved before similar publications can be quickly and inexpensively produced

    Exchange-mediated, nonlinear, out-of-plane magnetic field dependence of the ferromagnetic vortex gyrotropic mode frequency driven by core deformation

    No full text
    We have performed micromagnetic simulations of low-amplitude gyrotropic dynamics of magnetic vortices in the presence of spatially uniform out-of-plane magnetic fields. For disks having small lateral dimensions, we observe a frequency drop-off when approaching the disk's out-of-plane saturation field. This nonlinear frequency response is shown to be associated with a vortex core deformation driven by nonuniform demagnetizing fields that act on the shifted core. The deformation results in an increase in the average out-of-plane magnetization of the displaced vortex state (contrasting the effect of gyrofield-driven deformation at low field), which causes the exchange contribution to the vortex stiffness to switch from positive to negative. This generates an enhanced reduction of the core stiffness at high field, leading to a nonlinear field dependence of the gyrotropic mode frequency

    Effective potential for Lifshitz type z=3 gauge theories

    Full text link
    We consider the one-loop effective potential at zero temperature in field theories with anisotropic space-time scaling, with critical exponent z=3z=3, including scalar, fermion and gauge fields. The fermion determinant generates a symmetry breaking term at one loop in the effective potential and a local minimum appears, for non zero scalar field, for every value of the Yukawa coupling. Depending on the relative strength of the coupling constants for the scalar and the gauge field, we find a second symmetry breaking local minimum in the effective potential for a bigger value of the scalar field.Comment: 12 pages, 3 figures. Minor corrections in the text, results unchange
    corecore