18,520 research outputs found
KIC 2856960: the impossible triple star
KIC 2856960 is a star in the Kepler field which was observed by Kepler for 4
years. It shows the primary and secondary eclipses of a close binary of 0.258d
as well as complex dipping events that last for about 1.5d at a time and recur
on a 204d period. The dips are thought to result when the close binary passes
across the face of a third star. In this paper we present an attempt to model
the dips. Despite the apparent simplicity of the system and strenuous efforts
to find a solution, we find that we cannot match the dips with a triple star
while satisfying Kepler's laws. The problem is that to match the dips the
separation of the close binary has to be larger than possible relative to the
outer orbit given the orbital periods. Quadruple star models can get round this
problem but require the addition of a so-far undetected intermediate period of
order 5 -- 20d that has be a near-perfect integer divisor of the outer 204d
period. Although we have no good explanation for KIC 2856960, using the full
set of Kepler data we are able to update several of its parameters. We also
present a spectrum showing that KIC 2856960 is dominated by light from a K3- or
K4-type star.Comment: 11 pages, 13 figures, accepted for publication in MNRAS August 21,
201
Competitive partitioning of rotational energy in gas ensemble equilibration
A wide-ranging computational study of equilibration in binary mixtures of diatomic gases reveals the existence of competition between the constituent species for the orbital angular momentum and energy available on collision with the bath gas. The ensembles consist of a bath gas AB(v;j), and a highly excited minor component CD(v';j'), present in the ratio AB:CD = 10:1. Each ensemble contains 8000 molecules. Rotational temperatures (T(r)) are found to differ widely at equilibration with T(r)(AB)/T(r)(CD) varying from 2.74 to 0.92, indicating unequal partitioning of rotational energy and angular momentum between the two species. Unusually, low values of T(r) are found generally to be associated with diatomics of low reduced mass. To test effects of the equi-partition theorem on low T(r) we undertook calculations on HF(6;4) in N(2)(0;10) over the range 100-2000 K. No significant change in T(r)(N2)/T(r)(HF) was found. Two potential sources of rotational inequality are examined in detail. The first is possible asymmetry of -Δj and +Δj probabilities for molecules in mid- to high j states resulting from the quadratic dependence of rotational energy on j. The second is the efficiency of conversion of orbital angular momentum, generated on collision with bath gas molecules, into molecular rotation. Comparison of these two possible effects with computed T(r)(AB)/T(r)(CD) shows the efficiency factor to be an excellent predictor of partitioning between the two species. Our finding that T(r) values for molecules such as HF and OH are considerably lower than other modal temperatures suggests that the determination of gas ensemble temperatures from Boltzmann fits to rotational distributions of diatomics of low reduced mass may require a degree of caution
IPD - the Immuno Polymorphism Database
The Immuno Polymorphism Database (IPD) (http://www.ebi.ac.uk/ipd/) is a set of specialist databases related to the study of polymorphic genes in the immune system. IPD currently consists of four databases: IPD-KIR, contains the allelic sequences of Killer-cell Immunoglobulin-like Receptors; IPD-MHC, a database of sequences of the Major Histocompatibility Complex of different species; IPD-HPA, alloantigens expressed only on platelets; and IPD-ESTAB, which provides access to the European Searchable Tumour Cell-Line Database, a cell bank of immunologically characterized melanoma cell lines. The IPD project works with specialist groups or nomenclature committees who provide and curate individual sections before they are submitted to IPD for online publication. The IPD project stores all the data in a set of related databases. Those sections with similar data, such as IPD-KIR and IPD-MHC share the same database structure. The sharing of a common database structure makes it easier to implement common tools for data submission and retrieval. The data are currently available online from the website and ftp directory; files will also be made available in different formats to download from the website and ftp server. The data will also be included in SRS, BLAST and FASTA search engines at the European Bioinformatics Institute
Agricultural extension policy in Australia: the good, the bad, and the misguided
In most states of Australia, agricultural extension policies and practices have increasingly been based on considerations of private/public goods, user pays and cost recovery. In addition, the delivery of extension has been strongly influenced by changing administrative structures and a change in the paradigm within which the extension community operates. These changes have had major impacts, including more extension being delivered by the private sector. There are positive aspects to the changes and, for some issues, they are appropriate. However, we have a number of reservations, particularly about the effectiveness of current extension systems in assisting the adoption of complex environmental and farming system technologies.Teaching/Communication/Extension/Profession,
Dissipative Particle Dynamics with energy conservation
Dissipative particle dynamics (DPD) does not conserve energy and this
precludes its use in the study of thermal processes in complex fluids. We
present here a generalization of DPD that incorporates an internal energy and a
temperature variable for each particle. The dissipation induced by the
dissipative forces between particles is invested in raising the internal energy
of the particles. Thermal conduction occurs by means of (inverse) temperature
differences. The model can be viewed as a simplified solver of the fluctuating
hydrodynamic equations and opens up the possibility of studying thermal
processes in complex fluids with a mesoscopic simulation technique.Comment: 5 page
The mass ratio distribution of short period double degenerate stars
Short period double degenerates (DDs) are close white dwarf - white dwarf
binary stars which are the result of the evolution of interacting binary stars.
We present the first definitive measurements of the mass ratio for two DDs,
WD0136+768 and WD1204+450, and an improved measurement of the mass ratio for
WD0957-666. We compare the properties of the 6 known DDs with measured mass
ratios to the predictions of various theoretical models. We confirm the result
that standard models for the formation of DDs do not predict sufficient DDs
with mass ratios near 1. We also show that the observed difference in cooling
ages between white dwarfs in DDs is a useful constraint on the initial mass
ratio of the binary. A more careful analysis of the properties of the white
dwarf pair WD1704+481.2 leads us to conclude that the brighter white dwarf is
older than its fainter companion. This is the opposite of the usual case for
DDs and is caused by the more massive white dwarf being smaller and cooling
faster. The mass ratio in the sense (mass of younger star)/(mass of older star)
is then 1.43+-0.06 rather than the value 0.70+-0.03 given previously.Comment: Accepted for publication in MNRA
Estimation of mean sea surfaces in the north Atlantic, the Pacific and the Indian Ocean using GEOS-3 altimeter data
The mean surfaces of several regions of the world's oceans were estimated using GEOS-3 altimeter data. The northwest Atlantic, the northeast Pacific off the coast of California, the Indian Ocean, the southwest Pacific, and the Phillipine Sea are included. These surfaces have been oriented with respect to a common earth center-of-mass system by constraining the separate solutions to conform to precisely determined laser reference control orbits. The same reference orbits were used for all regions assuring continuity of the separate solutions. Radial accuracies of the control orbits were in the order of one meter. The altimeter measured sea surface height crossover differences were minimized by the adjustment of tilt and bias parameters for each pass with the exception of laser reference control passes. The tilt and bias adjustments removed long wavelength errors which were primarily due to orbit error. Ocean tides were evaluated. The resolution of the estimated sea surfaces varied from 0.25 degrees off the east coast of the United States to about 2 degrees in part of the Indian Ocean near Australia. The rms crossover discrepancy after adjustment varied from 30 cm to 70 cm depending upon geographic location. Comparisons of the altimeter derived mean sea surface in the North Atlantic with the 5 feet x 5 feet GEM-8 detailed gravimetric geoid indicated a relative consistency of better than a meter
Evidence for bimodal orbital separations of white dwarf-red dwarf binary stars
We present the results of a radial velocity survey of 20 white dwarf plus M
dwarf binaries selected as a follow up to a \textit{Hubble Space Telescope}
study that aimed to spatially resolve suspected binaries. Our candidates are
taken from the list of targets that were spatially unresolved with
\textit{Hubble}. We have determined the orbital periods for 16 of these compact
binary candidates. The period distribution ranges from 0.14 to 9.16\,d and
peaks near 0.6\,d. The original sample therefore contains two sets of binaries,
wide orbits (\,au) and close orbits (\,au), with
no systems found in the \,au range. This observational evidence
confirms the bimodal distribution predicted by population models and is also
similar to results obtained in previous studies. We find no binary periods in
the months to years range, supporting the post common envelope evolution
scenario. One of our targets, WD\,1504+546, was discovered to be an eclipsing
binary with a period of 0.93\,d
- …