852 research outputs found

    Guest editorial: Special issue on active perception

    Full text link

    Effects of seasonality on brain size evolution: evidence from strepsirrhine primates

    Full text link
    Seasonal changes in energy supply impose energetic constraints that affect many physiological and behavioral characteristics of organisms. As brains are costly, we predict brain size to be relatively small in species that experience a higher degree of seasonality (expensive brain framework). Alternatively, it has been argued that larger brains give animals the behavioral flexibility to buffer the effects of habitat seasonality (cognitive buffer hypothesis). Here, we test these two hypotheses in a comparative study on strepsirrhine primates (African lorises and Malagasy lemurs) that experience widely varying degrees of seasonality. We found that experienced seasonality is negatively correlated with relative brain size in both groups, controlling for the effect of phylogenetic relationships and possible confounding variables such as the extent of folivory. However, relatively larger-brained lemur species tend to experience less variation in their dietary intake than indicated by the seasonality of their habitat. In conclusion, we found clear support for the hypothesis that seasonality restricts brain size in strepsirrhines as predicted by the expensive brain framework and weak support for the cognitive buffer hypothesis in lemurs

    Superconductors with Topological Order

    Full text link
    We propose a mechanism of superconductivity in which the order of the ground state does not arise from the usual Landau mechanism of spontaneous symmetry breaking but is rather of topological origin. The low-energy effective theory is formulated in terms of emerging gauge fields rather than a local order parameter and the ground state is degenerate on topologically non-trivial manifolds. The simplest example of this mechanism of superconductivty is concretely realized as global superconductivty in Josephson junction arrays.Comment: 4 pages, no figure

    Allomaternal care, life history and brain size evolution in mammals

    Full text link
    Humans stand out among the apes by having both an extremely large brain and a relatively high reproductive output, which has been proposed to be a consequence of cooperative breeding. Here, we test for general correlates of allomaternal care in a broad sample of 445 mammal species, by examining life history traits, brain size, and different helping behaviors, such as provisioning, carrying, huddling or protecting the offspring and the mother. As predicted from an energetic-cost perspective, a positive correlation between brain size and the amount of help by non-mothers is found among mammalian clades as a whole and within most groups, especially carnivores, with the notable exception of primates. In the latter group, the presence of energy subsidies during breeding instead resulted in increased fertility, up to the extreme of twinning in callitrichids, as well as a more altricial state at birth. In conclusion, humans exhibit a combination of the pattern found in provisioning carnivores, and the enhanced fertility shown by cooperatively breeding primates. Our comparative results provide support for the notion that cooperative breeding allowed early humans to sidestep the generally existing trade-off between brain size and reproductive output, and suggest an alternative explanation to the controversial 'obstetrical dilemma'-argument for the relatively altricial state of human neonates at birth

    How Humans Evolved Large Brains: Comparative Evidence

    Get PDF
    The human brain is about three times as large as that of our closest living relatives, the great apes. Overall brain size is a good predictor of cognitive performance in a variety of tests in primates. 1,2 Therefore, hypotheses explaining the evolution of this remarkable difference have attracted much interest. In this review, we give an overview of the current evidence from comparative studies testing these hypotheses. If cognitive benefits are diverse and ubiquitous, it is possible that most of the variation in relative brain size among extant primates is explained by variation in the ability to avoid the fitness costs of increased brain size (allocation trade-offs and increased minimum energy needs). This is indeed what we find, suggesting that an energetic perspective helps to complement approaches to explain variation in brain size that postulate cognitive benefits. The expensive brain framework also provides a coherent scenario for how these factors may have shaped early hominin brain expansion

    Exact solution of the Zeeman effect in single-electron systems

    Full text link
    Contrary to popular belief, the Zeeman effect can be treated exactly in single-electron systems, for arbitrary magnetic field strengths, as long as the term quadratic in the magnetic field can be ignored. These formulas were actually derived already around 1927 by Darwin, using the classical picture of angular momentum, and presented in their proper quantum-mechanical form in 1933 by Bethe, although without any proof. The expressions have since been more or less lost from the literature; instead, the conventional treatment nowadays is to present only the approximations for weak and strong fields, respectively. However, in fusion research and other plasma physics applications, the magnetic fields applied to control the shape and position of the plasma span the entire region from weak to strong fields, and there is a need for a unified treatment. In this paper we present the detailed quantum-mechanical derivation of the exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static magnetic field. Notably, these formulas are not much more complicated than the better-known approximations. Moreover, the derivation allows the value of the electron spin gyromagnetic ratio gsg_s to be different from 2. For completeness, we then review the details of dipole transitions between two hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script
    corecore