4,935 research outputs found
Mechanical and SEM analysis of artificial comet nucleus samples
Since 1987 experiments dealing with comet nucleus phenomena have been carried out in the DFVLR space simulation chambers. The main objective of these experiments is a better understanding of thermal behavior, surface phenomena and especially the gas dust interaction. As a function of different sample compositions and exposure to solar irradiation (xenon-bulbs) crusts of different hardness and thickness were measured. The measuring device consists of a motor driven pressure foot (5 mm diameter), which is pressed into the sample. The applied compressive force is electronically monitored. The microstructure of the crust and dust residuals is investigated by scanning electron microscopy (SEM) techniques. Stress-depth profiles of an unirradiated and an irradiated model comet are given
Report on Characterization of U-10 wt.% Zr Alloy
This report summarizes the chemical and structural characterization results for a U-10 wt.% Zr alloy to be used in an ultra-high burn-up nuclear fuel concept. The as-cast alloy material was received from Texas A and M University. Characterization and an initial heat treatment of the alloy material were conducted at Lawrence Livermore National Laboratory. The as-received ingot was sectioned for X-ray analysis, metallography, SEM, TEM, and heat treatments, as shown in Figure 1
A Microcantilever-based Gas Flow Sensor for Flow Rate and Direction Detection
The purpose of this paper is to apply characteristics of residual stress that
causes cantilever beams to bend for manufacturing a micro-structured gas flow
sensor. This study uses a silicon wafer deposited silicon nitride layers,
reassembled the gas flow sensor with four cantilever beams that perpendicular
to each other and manufactured piezoresistive structure on each
micro-cantilever by MEMS technologies, respectively. When the cantilever beams
are formed after etching the silicon wafer, it bends up a little due to the
released residual stress induced in the previous fabrication process. As air
flows through the sensor upstream and downstream beam deformation was made,
thus the airflow direction can be determined through comparing the resistance
variation between different cantilever beams. The flow rate can also be
measured by calculating the total resistance variations on the four
cantilevers.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/handle/2042/16838
Recommended from our members
Contribution of Transcription Factor Binding Site Motif Variants to Condition-Specific Gene Expression Patterns in Budding Yeast
It is now experimentally well known that variant sequences of a cis transcription factor binding site motif can contribute to differential regulation of genes. We characterize the relationship between motif variants and gene expression by analyzing expression microarray data and binding site predictions. To accomplish this, we statistically detect motif variants with effects that differ among environments. Such environmental specificity may be due to either affinity differences between variants or, more likely, differential interactions of TFs bound to these variants with cofactors, and with differential presence of cofactors across environments. We examine conservation of functional variants across four Saccharomyces species, and find that about a third of transcription factors have target genes that are differentially expressed in a condition-specific manner that is correlated with the nucleotide at variant motif positions. We find good correspondence between our results and some cases in the experimental literature (Reb1, Sum1, Mcm1, and Rap1). These results and growing consensus in the literature indicates that motif variants may often be functionally distinct, that this may be observed in genomic data, and that variants play an important role in condition-specific gene regulation.</p
Inconsistency of QED in the Presence of Dirac Monopoles
A precise formulation of local gauge invariance in QED is presented,
which clearly shows that the gauge coupling associated with the unphysical
longitudinal photon field is non-observable and actually has an arbitrary
value. We then re-examine the Dirac quantization condition and find that its
derivation involves solely the unphysical longitudinal coupling. Hence an
inconsistency inevitably arises in the presence of Dirac monopoles and this can
be considered as a theoretical evidence against their existence. An
alternative, independent proof of this conclusion is also presented.Comment: Extended and combined version, refinements added; 20 LaTex pages,
Published in Z. Phys. C65, pp.175-18
Embedding initial data for black hole collisions
We discuss isometric embedding diagrams for the visualization of initial data
for the problem of the head-on collision of two black holes. The problem of
constructing the embedding diagrams is explicitly presented for the best
studied initial data, the Misner geometry. We present a partial solution of the
embedding diagrams and discuss issues related to completing the solution.Comment: (27pp text, 11 figures
The Big Bang as the Ultimate Traffic Jam
We present a novel solution to the nature and formation of the initial state
of the Universe. It derives from the physics of a generally covariant extension
of Matrix theory. We focus on the dynamical state space of this background
independent quantum theory of gravity and matter, an infinite dimensional,
complex non-linear Grassmannian. When this space is endowed with a
Fubini--Study-like metric, the associated geodesic distance between any two of
its points is zero. This striking mathematical result translates into a
physical description of a hot, zero entropy Big Bang. The latter is then seen
as a far from equilibrium, large fluctuation driven, metastable ordered
transition, a ``freezing by heating'' jamming transition. Moreover, the
subsequent unjamming transition could provide a mechanism for inflation while
rejamming may model a Big Crunch, the final state of gravitational collapse.Comment: 8 pages, This essay received an honorable mention in the Gravity
Research Foundation Essay Competition, 200
Acetylome of acinetobacter baumannii SK17 reveals a highly-conserved modification of histone-like protein HU
Lysine acetylation is a prevalent post-translational modification in both eukaryotes and prokaryotes. Whereas this modification is known to play pivotal roles in eukaryotes, the function and extent of this modification in prokaryotic cells remain largely unexplored. Here we report the acetylome of a pair of antibiotic-sensitive and -resistant nosocomial pathogen Acinetobacter baumannii SK17-S and SK17-R. A total of 145 lysine acetylation sites on 125 proteins was identified, and there are 23 acetylated proteins found in both strains, including histone-like protein HU which was found to be acetylated at Lys13. HU is a dimeric DNA-binding protein critical for maintaining chromosomal architecture and other DNA-dependent functions. To analyze the effects of site-specific acetylation, homogenously Lys13-acetylated HU protein, HU(K13ac) was prepared by genetic code expansion. Whilst not exerting an obvious effect on the oligomeric state, Lys13 acetylation alters both the thermal stability and DNA binding kinetics of HU. Accordingly, this modification likely destabilizes the chromosome structure and regulates bacterial gene transcription. This work indicates that acetyllysine plays an important role in bacterial epigenetics
- …