98 research outputs found

    Comparative analysis of current 3D printed acetabular titanium implants

    Get PDF
    BACKGROUND: The design freedom allowed by three-dimensional (3D) printing enables the production of acetabular off-the-shelf cups with complex porous structures. The only studies on these designs are limited to clinical outcomes. Our aim was to analyse and compare the designs of different 3D printed cups from multiple manufacturers (Delta TT, Trident II Tritanium and Mpact 3D Metal). METHODS: We analysed the outer surface of the cups using scanning electron microscopy (SEM) and assessed clinically relevant morphometric features of the lattice structures using micro-computed tomography (micro-CT). Dimensions related to the cup wall (solid, lattice and overall thickness) were also measured. Roundness and roughness of the internal cup surface were analysed with coordinate measuring machine (CMM) and optical profilometry. RESULTS: SEM showed partially molten titanium beads on all cups, significantly smaller on Trident II (27 μm vs ~ 70 μm, p < 0.0001). We found a spread of pore sizes, with median values of 0.521, 0.841 and 1.004 mm for Trident II, Delta TT and Mpact, respectively. Trident II was also significantly less porous (63%, p < 0.0001) than the others (Delta TT 72.3%, Mpact 76.4%), and showed the thinnest lattice region of the cup wall (1.038 mm, p < 0.0001), while Mpact exhibited the thicker solid region (4.880 mm, p < 0.0044). Similar roundness and roughness of the internal cup surfaces were found. CONCLUSION: This was the first study to compare the designs of different 3D printed cups. A variability in the morphology of the outer surface of the cups and lattice structures was found. The existence of titanium beads on 3D printed parts is a known by-product of the manufacturing process; however, their prevalence on acetabular cups used in patients is an interesting finding, since these beads may potentially be released in the body

    Dimensional analysis of 3D-printed acetabular cups for hip arthroplasty using X-ray microcomputed tomography

    Get PDF
    Purpose Three-dimensional (3D) printing is increasingly used to produce orthopaedic components for hip arthroplasty, such as acetabular cups, which show complex lattice porous structures and shapes. However, limitations on the quality of the final implants are present; thus, investigations are needed to ensure adequate quality and patients safety. X-ray microcomputed tomography (micro-CT) has been recognised to be the most suitable method to evaluate the complexity of 3D-printed parts. The purpose of this study was to assess the reliability of a micro-CT analysis method comparing it with reference systems, such as coordinate measuring machine and electron microscopy. Design/methodology/approach 3D-printed acetabular components for hip arthroplasty (n = 2) were investigated. Dimensions related to the dense and porous regions of the samples were measured. The micro-CT scanning parameters (voltage – kV, current – µA) were optimised selecting six combinations of beam voltage and current. Findings Micro-CT showed good correlation and agreement with both coordinate measuring machine and scanning electron microscopy when optimal scanning parameters were selected (130 kV – 100 µA to 180 kV – 80 µA). Mean discrepancies of 50 µm (± 300) and 20 µm (± 60) were found between the techniques for dense and porous dimensions. Investigation method such as micro-CT imaging may help to better understand the impact of 3D printing manufacturing technology on the properties of orthopaedic implants. Originality/value The optimisation of the scanning parameters and the validation of this method with reference techniques may guide further analysis of similar orthopaedic components

    Evidence of structural cavities in 3D printed acetabular cups for total hip arthroplasty

    Get PDF
    The use of three‐dimensional (3D) printing to manufacture off‐the‐shelf titanium acetabular cups for hip arthroplasty has increased; however, the impact of this manufacturing technology is yet not fully understood. Although several studies have described the presence of structural cavities in 3D printed parts, there has been no analysis of full postproduction acetabular components. The aim of this study was to investigate the effect of 3D printing on the material structure of acetabular implants, first comparing different designs of 3D printed cups, second comparing 3D printed with conventionally manufactured cups. Two of the 3D printed cups were produced using electron beam melting (EBM), one using laser rapid manufacturing (LRM). The investigation was performed using X‐ray microcomputed tomography, imaging both the entire cups and samples sectioned from different regions of each cup. All 3D printed cups showed evidence of structural cavities; these were uniformly distributed in the volume of the samples and exhibited a prevalent spherical shape. The LRM‐manufactured cup had significantly higher cavity density (p = .0286), with a median of 21 cavities/mm^{3} compared to 3.5 cavities/mm^{3} for EBM cups. However, the cavity size was similar, with a median of 20 μm (p = .7385). The conventional cups showed a complete absence of distinguishable cavities. The presence of cavities is a known limitation of the 3D printing technology; however, it is noteworthy that we found them in orthopedic implants used in patients. Although this may impact their mechanical properties, to date, 3D printed cups have not been reported to encounter such failures

    Analysis of retrieved STRYDE nails

    Get PDF
    AIMS: The aim of this study was to present the first retrieval analysis findings of PRECICE STRYDE intermedullary nails removed from patients, providing useful information in the post-market surveillance of these recently introduced devices. METHODS: We collected ten nails removed from six patients, together with patient clinical data and plain radiograph imaging. We performed macro- and microscopic analysis of all surfaces and graded the presence of corrosion using validated semiquantitative scoring methods. We determined the elemental composition of surface debris using energy dispersive x-ray spectroscopy (EDS) and used metrology analysis to characterize the surface adjacent to the extendable junctions. RESULTS: All nails were removed at the end of treatment, having achieved their intended lengthening (20 mm to 65 mm) and after regenerate consolidation. All nails had evidence of corrosion localized to the screw holes and the extendable junctions; corrosion was graded as moderate at the junction of one nail and severe at the junctions of five nails. EDS analysis showed surface deposits to be chromium rich. Plain radiographs showed cortical thickening and osteolysis around the junction of six nails, corresponding to the same nails with moderate - severe junction corrosion. CONCLUSION: We found, in fully united bones, evidence of cortical thickening and osteolysis that appeared to be associated with corrosion at the extendable junction; when corrosion was present, cortical thickening was adjacent to this junction. Further work, with greater numbers of retrievals, is required to fully understand this association between corrosion and bony changes, and the influencing surgeon, implant, and patient factors involved. Cite this article: Bone Jt Open 2021;2(8):599-610

    Assessment of the equivalence of a generic to a branded femoral stem.

    Get PDF
    AIMS: The aim of this study was to compare the design of the generic OptiStem XTR femoral stem with the established Exeter femoral stem. MATERIALS AND METHODS: We obtained five boxed, as manufactured, implants of both designs at random (ten in total). Two examiners were blinded to the implant design and independently measured the mass, volume, trunnion surface topography, trunnion roughness, trunnion cone angle, Caput-Collum-Diaphyseal (CCD) angle, femoral offset, stem length, neck length, and the width and roughness of the polished stem shaft using peer-reviewed methods. We then compared the stems using these parameters. RESULTS: We found that the OptiStems were lighter (p < 0.001), had a rougher trunnion surface (p < 0.001) with a greater spacing and depth of the machined threads (p < 0.001), had greater trunnion cone angles (p = 0.007), and a smaller radius at the top of the trunnion (p = 0.007). There was no difference in stem volume (p = 0.643), CCD angle (p = 0.788), offset (p = 0.993), neck length (p = 0.344), stem length (p = 0.808), shaft width (p = 0.058 to 0.720) or roughness of the polished surface (p = 0.536). CONCLUSION: This preliminary investigation found that whilst there were similarities between the two designs, the generic OptiStem is different to the branded Exeter design. Cite this article: Bone Joint J 2017;99-B:310-16

    Left ventricular T1-mapping in diastole versus systole in patients with mitral regurgitation

    Get PDF
    Cardiovascular magnetic resonance T1-mapping enables myocardial tissue characterisation, and is capable of quantifying both intracellular and extracellular volume. T1-mapping is conventionally performed in diastole, however, we hypothesised that systolic readout would reduce variability due to a reduction in myocardial blood volume. This study investigated whether T1-mapping in systole alters T1 values compared to diastole and whether reproducibility alters in atrial fibrillation compared to sinus rhythm. We prospectively identified 103 consecutive patients recruited to the Mitral FINDER study who had T1 mapping in systole and diastole. These patients had moderate or severe mitral regurgitation and a high incidence of ventricular dilatation and atrial fibrillation. T1, ECV and goodness-of-fit (R2) values of the T1 times were calculated offline using Circle cvi42 and in house-developed software. Systolic T1 mapping was associated with fewer myocardial segments being affected by artefact compared to diastolic T1 mapping [217/2472 (9%) vs 515/2472 (21%)]. Mean native T1 values were not significantly different when measured in systole and diastole (985 ± 26 ms vs 988 ± 29 respectively; p = 0.061) and mean post-contrast values showed similar good agreement (462 ± 32 ms vs 459 ± 33 respectively, p = 0.052). No clinically significant differences in ECV, native T1 and post-contrast T1 were identified between diastolic and systolic T1 maps in males versus females, or in patients with permanent atrial fibrillation versus sinus rhythm. A statistically significant improvement in R2 value was observed with systolic over diastolic T1 mapping in all analysed maps (n = 411) (96.2 ± 1.4% vs 96.0 ± 1.4%; p &lt; 0.001) and in subgroup analyses [Sinus rhythm: 96.1 ± 1.4 vs 96.3 ± 1.4 (n = 327); p &lt; 0.001. AF: 95.5 ± 1.3 vs 95.9 ± 1.2 (n = 80); p &lt; 0.001] [Males: 95.8 ± 1.4 vs 96.1 ± 1.3 (n = 264); p &lt; 0.001; Females: 96.2 ± 1.3 vs 96.4 ± 1.4 (n = 143); p = 0.009]. In conclusion, myocardial T1 mapping is associated with similar T1 and ECV values in systole and diastole. Furthermore, systolic acquisition is less prone to gating artefact in arrhythmia.</p

    The role of cardiac magnetic resonance imaging in the assessment of heart failure with preserved ejection fraction

    Get PDF
    Heart failure (HF) is a major cause of morbidity and mortality worldwide. Current classifications of HF categorize patients with a left ventricular ejection fraction of 50% or greater as HF with preserved ejection fraction or HFpEF. Echocardiography is the first line imaging modality in assessing diastolic function given its practicality, low cost and the utilization of Doppler imaging. However, the last decade has seen cardiac magnetic resonance (CMR) emerge as a valuable test for the sometimes challenging diagnosis of HFpEF. The unique ability of CMR for myocardial tissue characterization coupled with high resolution imaging provides additional information to echocardiography that may help in phenotyping HFpEF and provide prognostication for patients with HF. The precision and accuracy of CMR underlies its use in clinical trials for the assessment of novel and repurposed drugs in HFpEF. Importantly, CMR has powerful diagnostic utility in differentiating acquired and inherited heart muscle diseases presenting as HFpEF such as Fabry disease and amyloidosis with specific treatment options to reverse or halt disease progression. This state of the art review will outline established CMR techniques such as transmitral velocities and strain imaging of the left ventricle and left atrium in assessing diastolic function and their clinical application to HFpEF. Furthermore, it will include a discussion on novel methods and future developments such as stress CMR and MR spectroscopy to assess myocardial energetics, which show promise in unraveling the mechanisms behind HFpEF that may provide targets for much needed therapeutic interventions

    The Chemical Form of Metal Species Released from Corroded Taper Junctions of Hip Implants: Synchrotron Analysis of Patient Tissue

    Get PDF
    The mechanisms of metal release from the articulation at the head cup bearing and the tapered junctions of orthopaedic hip implants are known to differ and the debris generated varies in size, shape and volume. Significantly less metal is lost from the taper junction between Cobalt-Chromium-Molybdenum (CoCrMo) and Titanium (Ti) components (fretting-corrosion dominant mechanism), when compared to the CoCrMo bearing surfaces (wear-corrosion dominant mechanism). Corrosion particles from the taper junction can lead to Adverse Reactions to Metal Debris (ARMD) similar to those seen with CoCrMo bearings. We used synchrotron methods to understand the modes underlying clinically significant tissue reactions to Co, Cr and Ti by analysing viable peri-prosthetic tissue. Cr was present as Cr2O3 in the corroded group in addition to CrPO4 found in the metal-on-metal (MoM) group. Interestingly, Ti was present as TiO2 in an amorphous rather than rutile or anatase physical form. The metal species were co-localized in the same micron-scale particles as result of corrosion processes and in one cell type, the phagocytes. This work gives new insights into the degradation products from metal devices as well as guidance for toxicological studies in humans
    corecore