158 research outputs found

    Kirzhnits gradient expansion for a D-dimensional Fermi gas

    Full text link
    For an ideal D-dimensional Fermi gas under generic external confinement we derive the correcting coefficient (D−2)/3D(D-2)/3D of the von Weizsacker term in the kinetic energy density. To obtain this coefficient we use the Kirzhnits semiclassical expansion of the number operator up to the second order in the Planck constant ℏ\hbar. Within this simple and direct approach we determine the differential equation of the density profile and the density functional of the Fermi gas. In the case D=2 we find that the Kirzhnits gradient corrections vanish to all order in ℏ\hbar.Comment: 6 pages, 0 figures, accepted for publication in J. Phys. A: Math. Theo

    Damping of zero sound in Luttinger liquids

    Full text link
    We calculate the damping gamma_q of collective density oscillations (zero sound) in a one-dimensional Fermi gas with dimensionless forward scattering interaction F and quadratic energy dispersion k^2 / 2 m at zero temperature. For wave-vectors | q| /k_F small compared with F we find to leading order gamma_q = v_F^{-1} m^{-2} Y (F) | q |^3, where v_F is the Fermi velocity, k_F is the Fermi wave-vector, and Y (F) is proportional to F^3 for small F. We also show that zero-sound damping leads to a finite maximum proportional to |k - k_F |^{-2 + 2 eta} of the charge peak in the single-particle spectral function, where eta is the anomalous dimension. Our prediction agrees with photoemission data for the blue bronze K_{0.3}MoO_3.Comment: final version as published; with more technical details; we have added a discussion of recent work which appeared after our initial cond-mat posting; 13 pages, 5 figure

    Simple model of the static exchange-correlation kernel of a uniform electron gas with long-range electron-electron interaction

    Full text link
    A simple approximate expression in real and reciprocal spaces is given for the static exchange-correlation kernel of a uniform electron gas interacting with the long-range part only of the Coulomb interaction. This expression interpolates between the exact asymptotic behaviors of this kernel at small and large wave vectors which in turn requires, among other thing, information from the momentum distribution of the uniform electron gas with the same interaction that have been calculated in the G0W0 approximation. This exchange-correlation kernel as well as its complement analogue associated to the short-range part of the Coulomb interaction are more local than the Coulombic exchange-correlation kernel and constitute potential ingredients in approximations for recent adiabatic connection fluctuation-dissipation and/or density functional theory approaches of the electronic correlation problem based on a separate treatment of long-range and short-range interaction effects.Comment: 14 pages, 14 figures, to be published in Phys. Rev.

    Dynamic Many-Body Theory. II. Dynamics of Strongly Correlated Fermi Fluids

    Full text link
    We develop a systematic theory of multi-particle excitations in strongly interacting Fermi systems. Our work is the generalization of the time-honored work by Jackson, Feenberg, and Campbell for bosons, that provides, in its most advanced implementation, quantitative predictions for the dynamic structure function in the whole experimentally accessible energy/momentum regime. Our view is that the same physical effects -- namely fluctuations of the wave function at an atomic length scale -- are responsible for the correct energetics of the excitations in both Bose and Fermi fluids. Besides a comprehensive derivation of the fermion version of the theory and discussion of the approximations made, we present results for homogeneous He-3 and electrons in three dimensions. We find indeed a significant lowering of the zero sound mode in He-3 and a broadening of the collective mode due to the coupling to particle-hole excitations in good agreement with experiments. The most visible effect in electronic systems is the appearance of a ``double-plasmon'' excitation.Comment: submitted to Phys. Rev.

    Nonlocal density functionals and the linear response of the homogeneous electron gas

    Full text link
    The known and usable truly nonlocal functionals for exchange-correlation energy of the inhomogeneous electron gas are the ADA (average density approximation) and the WDA (weighted density approximation). ADA, by design, yields the correct linear response function of the uniform electron gas. WDA is constructed so that it is exact in the limit of one-electron systems. We derive an expression for the linear response of the uniform gas in the WDA, and calculate it for several flavors of WDA. We then compare the results with the Monte-Carlo data on the exchange-correlation local field correction, and identify the weak points of conventional WDA in the homogeneous limit. We suggest how the WDA can be modified to improve the response function. The resulting approximation is a good one in both opposite limits, and should be useful for practical nonlocal density functional calculations.Comment: 4 pages, two eps figures embedde

    Exact exchange potential evaluated solely from occupied Kohn-Sham and Hartree-Fock solutions

    Full text link
    The reported new algorithm determines the exact exchange potential v_x in a iterative way using energy and orbital shifts (ES, OS) obtained - with finite-difference formulas - from the solutions (occupied orbitals and their energies) of the Hartree-Fock-like equation and the Kohn-Sham-like equation, the former used for the initial approximation to v_x and the latter - for increments of ES and OS due to subsequent changes of v_x. Thus, solution of the differential equations for OS, used by Kummel and Perdew (KP) [Phys. Rev. Lett. 90, 043004 (2003)], is avoided. The iterated exchange potential, expressed in terms of ES and OS, is improved by modifying ES at odd iteration steps and OS at even steps. The modification formulas are related to the OEP equation (satisfied at convergence) written as the condition of vanishing density shift (DS) - they are obtained, respectively, by enforcing its satisfaction through corrections to approximate OS and by determining optimal ES that minimize the DS norm. The proposed method, successfully tested for several closed-(sub)shell atoms, from Be to Kr, within the DFT exchange-only approximation, proves highly efficient. The calculations using pseudospectral method for representing orbitals give iterative sequences of approximate exchange potentials (starting with the Krieger-Li-Iafrate approximation) that rapidly approach the exact v_x so that, for Ne, Ar and Zn, the corresponding DS norm becomes less than 10^{-6} after 13, 13 and 9 iteration steps for a given electron density. In self-consistent density calculations, orbital energies of 10^{-4} Hartree accuracy are obtained for these atoms after, respectively, 9, 12 and 12 density iteration steps, each involving just 2 steps of v_x iteration, while the accuracy limit of 10^{-6}--10^{-7} Hartree is reached after 20 density iterations.Comment: 21 pages, 5 figures, 3 table

    Analytical expressions for the charge-charge local-field factor and the exchange-correlation kernel of a two-dimensional electron gas

    Full text link
    We present an analytical expression for the static many-body local field factor G+(q)G_{+}(q) of a homogeneous two-dimensional electron gas, which reproduces Diffusion Monte Carlo data and embodies the exact asymptotic behaviors at both small and large wave number qq. This allows us to also provide a closed-form expression for the exchange and correlation kernel Kxc(r)K_{xc}(r), which represents a key input for density functional studies of inhomogeneous systems.Comment: 5 pages, 3 figure

    Exchange and correlation energies of ground states of atoms and molecules in strong magnetic fields

    Get PDF
    Using a Hartree-Fock mesh method and a configuration interaction approach based on a generalized Gaussian basis set we investigate the behaviour of the exchange and correlation energies of small atoms and molecules, namely th e helium and lithium atom as well as the hydrogen molecule, in the presence of a magnetic field covering the regime B=0-100a.u. In general the importance of the exchange energy to the binding properties of at oms or molecules increases strongly with increasing field strength. This is due to the spin-flip transitions and in particular due to the contributions of the tightly bound hydrogenic state s which are involved in the corresponding ground states of different symmetries. In contrast to the exchange energy the correlation energy becomes less relevant with increasing field strength. This holds for the individual configurations constituting the ground state and for the crossovers of the global ground state.Comment: 4 Figures acc.f.publ.in Phys.Rev.

    Nonuniqueness of the Potentials of Spin-Density-Functional Theory

    Get PDF
    It is shown that, contrary to widely held beliefs, the potentials of spin-density-functional theory (SDFT) are not unique functionals of the spin densities. Explicit examples of distinct sets of potentials with the same ground-state densities are constructed, and general arguments that uniqueness should not occur in SDFT and other generalized density-functional theories are given. As a consequence, various types of applications of SDFT require significant corrections or modifications.Comment: 4 pages, no figure

    Correlation energies of inhomogeneous many-electron systems

    Full text link
    We generalize the uniform-gas correlation energy formalism of Singwi, Tosi, Land and Sjolander to the case of an arbitrary inhomogeneous many-particle system. For jellium slabs of finite thickness with a self-consistent LDA groundstate Kohn-Sham potential as input, our numerical results for the correlation energy agree well with diffusion Monte Carlo results. For a helium atom we also obtain a good correlation energy.Comment: 4 pages,1 figur
    • 

    corecore