485 research outputs found

    Prediction of the 3D surface topography after ball end milling and its influence on aerodynamics

    Get PDF
    The surface topography of milled workpieces often defines their performance. One example is blades in turbine engines, where the topography defines the flow losses. This type of complex goods is often machined by ball end mills, either for manufacture or repair. The literature offers various model types to predict the surface topography in order to design a machining process without prior experiment. The most accurate models use the real kinematics of the process and blend the tool with the workpiece. But this type of surface prediction ignores the differences between the reality and the simulation due to vibrations, tool chipping etc. This paper presents a combined approach using the kinematic topography from the machining simulation and adds a stochastic topography based on empirical data. It could be shown, that the usage of the stochastic topography greatly affects the flow losses and thus cannot be ignored.DFG/CRC/87

    pMel17 is recognised by monoclonal antibodies NKI-beteb, HMB-45 and HMB-50 and by anti-melanoma CTL.

    Get PDF
    Recently, we cloned the cDNA encoding the melanocyte lineage-specific antigen gp100 and demonstrated that gp100 is recognised by three different monoclonal antibodies (MAbs) used to diagnose malignant melanoma. In addition, we showed that tumour-infiltrating lymphocytes (TIL 1200) from a melanoma patient reacted specifically with cells transfected with the gp100 cDNA. Molecular characterisation of the gp100 cDNA revealed that the gp100 antigen is highly homologous, but not identical, to another melanocyte-specific protein, pMel17. Here, we report that cells transfected with pMel17 cDNA also react with all three MAbs used to diagnose malignant melanoma, NKI-beteb, HMB-45 and HMB-50. Moreover, pMel17 transfectants are specifically lysed by TIL1200. These data demonstrate that antigenic processing of both gp100 and pMel17 give rise to peptides seen by anti-melanoma cytotoxic T lymphocytes (CTL) and are therefore potential targets for immunotherapy of malignant melanoma

    Activation of podocyte Notch mediates early Wt1 glomerulopathy

    Get PDF
    The Wilms' tumor suppressor gene, WT1, encodes a zinc finger protein that regulates podocyte development and is highly expressed in mature podocytes. Mutations in the WT1 gene are associated with the development of renal failure due to the formation of scar tissue within glomeruli, the mechanisms of which are poorly understood. Here, we used a tamoxifen-based CRE-LoxP system to induce deletion of Wt1 in adult mice to investigate the mechanisms underlying evolution of glomerulosclerosis. Podocyte apoptosis was evident as early as the fourth day post-induction and increased during disease progression, supporting a role for Wt1 in mature podocyte survival. Podocyte Notch activation was evident at disease onset with upregulation of Notch1 and its transcriptional targets, including Nrarp. There was repression of podocyte FoxC2 and upregulation of Hey2 supporting a role for a Wt1/FoxC2/Notch transcriptional network in mature podocyte injury. The expression of cleaved Notch1 and HES1 proteins in podocytes of mutant mice was confirmed in early disease. Furthermore, induction of podocyte HES1 expression was associated with upregulation of genes implicated in epithelial mesenchymal transition, thereby suggesting that HES1 mediates podocyte EMT. Lastly, early pharmacological inhibition of Notch signaling ameliorated glomerular scarring and albuminuria. Thus, loss of Wt1 in mature podocytes modulates podocyte Notch activation, which could mediate early events in WT1-related glomerulosclerosis

    An inducible CiliaGFP mouse model for in vivo visualization and analysis of cilia in live tissue

    Get PDF
    BACKGROUND: Cilia are found on nearly every cell type in the mammalian body, and have been historically classified as either motile or immotile. Motile cilia are important for fluid and cellular movement; however, the roles of non-motile or primary cilia in most tissues remain unknown. Several genetic syndromes, called the ciliopathies, are associated with defects in cilia structure or function and have a wide range of clinical presentations. Much of what we know about the formation and maintenance of cilia comes from model systems like C. elegans and Chalmydomonas. Studies of mammalian cilia in live tissues have been hampered by difficulty visualizing them. RESULTS: To facilitate analyses of mammalian cilia function we generated an inducible Cilia(GFP) mouse by targeting mouse cDNA encoding a cilia-localized protein somatostatin receptor 3 fused to GFP (Sstr3::GFP) into the ROSA26 locus. In this system, Sstr3::GFP is expressed from the ubiquitous ROSA26 promoter after Cre mediated deletion of an upstream Neo cassette flanked by lox P sites. Fluorescent cilia labeling was observed in a variety of live tissues and after fixation. Both cell-type specific and temporally regulated cilia labeling were obtained using multiple Cre lines. The analysis of renal cilia in anesthetized live mice demonstrates that cilia commonly lay nearly parallel to the apical surface of the tubule. In contrast, in more deeply anesthetized mice the cilia display a synchronized, repetitive oscillation that ceases upon death, suggesting a relationship to heart beat, blood pressure or glomerular filtration. CONCLUSIONS: The ability to visualize cilia in live samples within the Cilia(GFP) mouse will greatly aid studies of ciliary function. This mouse will be useful for in vivo genetic and pharmacological screens to assess pathways regulating cilia motility, signaling, assembly, trafficking, resorption and length control and to study cilia regulated physiology in relation to ciliopathy phenotypes

    Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin

    Get PDF
    Epicardial epithelial-mesenchymal transition (EMT) is hypothesized to generate cardiovascular progenitor cells that differentiate into various cell types, including coronary smooth muscle and endothelial cells, perivascular and cardiac interstitial fibroblasts and cardiomyocytes. Here we show that an epicardial-specific knockout of Wt1 leads to a reduction of mesenchymal progenitor cells and their derivatives. We demonstrate that Wt1 is essential for repression of the epithelial phenotype in epicardial cells and during Embryonic Stem (ES) cell differentiation, through direct transcriptional regulation of Snail (Snai1) and E-cadherin (Cdh1), two of the major mediators of EMT. Some mesodermal lineages fail to form in Wt1 null embryoid bodies but this effect is rescued by the expression of Snai1, underlining the importance of EMT in generating these differentiated cells. These new insights into the molecular mechanisms regulating cardiovascular progenitor cells and EMT will shed light on the pathogenesis of heart diseases and may help the development of cell based therapies

    Application of programmable bio-nano-chip system for the quantitative detection of drugs of abuse in oral fluids

    Get PDF
    Objective: There is currently a gap in on-site drug of abuse monitoring. Current detection methods involve invasive sampling of blood and urine specimens, or collection of oral fluid, followed by qualitative screening tests using immunochromatographic cartridges. While remote laboratories then may provide confirmation and quantitative assessment of a presumptive positive, this instrumentation is expensive and decoupled from the initial sampling making the current drug-screening program inefficient and costly. The authors applied a noninvasive oral fluid sampling approach integrated with the in-development chip-based Programmable bio-nano-chip (p-BNC) platform for the detection of drugs of abuse. Method: The p-BNC assay methodology was applied for the detection of tetrahydrocannabinol, morphine, amphetamine, methamphetamine, cocaine, methadone and benzodiazepines, initially using spiked buffered samples and, ultimately, using oral fluid specimen collected from consented volunteers. Results: Rapid (∼10 min), sensitive detection (∼ng/mL) and quantitation of 12 drugs of abuse was demonstrated on the p-BNC platform. Furthermore, the system provided visibility to time-course of select drug and metabolite profiles in oral fluids; for the drug cocaine, three regions of slope were observed that, when combined with concentration measurements from this and prior impairment studies, information about cocaine-induced impairment may be revealed. Conclusions: This chip-based p-BNC detection modality has significant potential to be used in the future by law enforcement officers for roadside drug testing and to serve a variety of other settings, including outpatient and inpatient drug rehabilitation centers, emergency rooms, prisons, schools, and in the workplace

    Correlation of enhanced thrombospondin-1 expression, TGF-β signalling and proteinuria in human type-2 diabetic nephropathy

    Get PDF
    Background. Activation of the thrombospondin-1 (TSP-1)-TGF-β pathway by glucose and the relevance of TSP-1-dependent activation of TGF-β for renal matrix expansion, renal fibrosis and sclerosis have previously been demonstrated by our group in in vivo and in vitro studies

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown
    • …
    corecore