213 research outputs found

    Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo

    Get PDF
    Chromogranin A (CgA) is a prohormone and granulogenic factor in neuroendocrine tissues with a regulated secretory pathway. The impact of CgA depletion on secretory granule formation has been previously demonstrated in cell culture. However, studies linking the structural effects of CgA deficiency with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not previously been reported. Adrenomedullary content of the secreted adrenal catecholamines norepinephrine (NE) and epinephrine (EPI) was decreased 30–40 % in Chga-KO mice. Quantification of NE and EPI-storing dense core (DC) vesicles (DCV) revealed decreased DCV numbers in chromaffin cells in Chga-KO mice. For both cell types, the DCV diameter in Chga-KO mice was less (100–200 nm) than in WT mice (200–350 nm). The volume density of the vesicle and vesicle number was also lower in Chga-KO mice. Chga-KO mice showed an ~47 % increase in DCV/DC ratio, implying vesicle swelling due to increased osmotically active free catecholamines. Upon challenge with 2 U/kg insulin, there was a diminution in adrenomedullary EPI, no change in NE and a very large increase in the EPI and NE precursor dopamine (DA), consistent with increased catecholamine biosynthesis during prolonged secretion. We found dilated mitochondrial cristae, endoplasmic reticulum and Golgi complex, as well as increased synaptic mitochondria, synaptic vesicles and glycogen granules in Chga-KO mice compared to WT mice, suggesting that decreased granulogenesis and catecholamine storage in CgA-deficient mouse adrenal medulla is compensated by increased VMAT-dependent catecholamine update into storage vesicles, at the expense of enhanced energy expenditure by the chromaffin cell

    A randomized controlled trial on the effectiveness of strength training on clinical and muscle cellular outcomes in patients with prostate cancer during androgen deprivation therapy: rationale and design

    Get PDF
    Background Studies indicate that strength training has beneficial effects on clinical health outcomes in prostate cancer patients during androgen deprivation therapy. However, randomized controlled trials are needed to scientifically determine the effectiveness of strength training on the muscle cell level. Furthermore, close examination of the feasibility of a high-load strength training program is warranted. The Physical Exercise and Prostate Cancer (PEPC) trial is designed to determine the effectiveness of strength training on clinical and muscle cellular outcomes in non-metastatic prostate cancer patients after high-dose radiotherapy and during ongoing androgen deprivation therapy. Methods/design Patients receiving androgen deprivation therapy for 9-36 months combined with external high-dose radiotherapy for locally advanced prostate cancer are randomized to an exercise intervention group that receives a 16 week high-load strength training program or a control group that is encouraged to maintain their habitual activity level. In both arms, androgen deprivation therapy is continued until the end of the intervention period. Clinical outcomes are body composition (lean body mass, bone mineral density and fat mass) measured by Dual-energy X-ray Absorptiometry, serological outcomes, physical functioning (muscle strength and cardio-respiratory fitness) assessed with physical tests and psycho-social functioning (mental health, fatigue and health-related quality of life) assessed by questionnaires. Muscle cellular outcomes are a) muscle fiber size b) regulators of muscle fiber size (number of myonuclei per muscle fiber, number of satellite cells per muscle fiber, number of satellite cells and myonuclei positive for androgen receptors and proteins involved in muscle protein degradation and muscle hypertrophy) and c) regulators of muscle fiber function such as proteins involved in cellular stress and mitochondrial function. Muscle cellular outcomes are measured on muscle cross sections and muscle homogenate from muscle biopsies obtained from muscle vastus lateralis. Discussion The findings from the PEPC trial will provide new knowledge on the effects of high-load strength training on clinical and muscle cellular outcomes in prostate cancer patients during androgen deprivation therapy. Trial registration ClinicalTrials.gov: NCT0065822

    Nitric oxide and cyclic nucleotides: Their roles in junction dynamics and spermatogenesis

    Get PDF
    Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways

    Reduced Satellite Cell Numbers and Myogenic Capacity in Aging Can Be Alleviated by Endurance Exercise

    Get PDF
    Background: Muscle regeneration depends on satellite cells, myogenic stem cells that reside on the myofiber surface. Reduced numbers and/or decreased myogenic aptitude of these cells may impede proper maintenance and contribute to the age-associated decline in muscle mass and repair capacity. Endurance exercise was shown to improve muscle performance; however, the direct impact on satellite cells in aging was not yet thoroughly determined. Here, we focused on characterizing the effect of moderate-intensity endurance exercise on satellite cell, as possible means to attenuate adverse effects of aging. Young and old rats of both genders underwent 13 weeks of treadmill-running or remained sedentary. Methodology: Gastrocnemius muscles were assessed for the effect of age, gender and exercise on satellite-cell numbers and myogenic capacity. Satellite cells were identified in freshly isolated myofibers based on Pax7 immunostaining (i.e., exvivo). The capacity of individual myofiber-associated cells to produce myogenic progeny was determined in clonal assays (in-vitro). We show an age-associated decrease in satellite-cell numbers and in the percent of myogenic clones in old sedentary rats. Upon exercise, there was an increase in myofibers that contain higher numbers of satellite cells in both young and old rats, and an increase in the percent of myogenic clones derived from old rats. Changes at the satellite cell level in old rats were accompanied with positive effects on the lean-to-fat Gast muscle composition and on spontaneous locomotion levels. The significance of these data is that they suggest that the endurance exercise-mediated boost in bot

    Nuclear Targeting of IGF-1 Receptor in Orbital Fibroblasts from Graves' Disease: Apparent Role of ADAM17

    Get PDF
    Insulin-like growth factor-1 receptor (IGF-1R) comprises two subunits, including a ligand binding domain on extra- cellular IGF-1Rα and a tyrosine phosphorylation site located on IGF-1Rβ. IGF-1R is over-expressed by orbital fibroblasts in the autoimmune syndrome, Graves' disease (GD). When activated by IGF-1 or GD-derived IgG (GD-IgG), these fibroblasts produce RANTES and IL-16, while those from healthy donors do not. We now report that IGF-1 and GD-IgG provoke IGF-1R accumulation in the cell nucleus of GD fibroblasts where it co-localizes with chromatin. Nuclear IGF-1R is detected with anti-IGF-1Rα-specific mAb and migrates to approximately 110 kDa, consistent with its identity as an IGF-1R fragment. Nuclear IGF-1R migrating as a 200 kDa protein and consistent with an intact receptor was undetectable when probed with either anti-IGF-1Rα or anti-IGF-1Rβ mAbs. Nuclear redistribution of IGF-1R is absent in control orbital fibroblasts. In GD fibroblasts, it can be abolished by an IGF-1R-blocking mAb, 1H7 and by physiological concentrations of glucocorticoids. When cell-surface IGF-1R is cross-linked with 125I IGF-1, 125I-IGF-1/IGF-1R complexes accumulate in the nuclei of GD fibroblasts. This requires active ADAM17, a membrane associated metalloproteinase, and the phosphorylation of IGF-1R. In contrast, virally encoded IGF-1Rα/GFP fusion protein localizes equivalently in nuclei in both control and GD fibroblasts. This result suggests that generation of IGF-1R fragments may limit the accumulation of nuclear IGF-1R. We thus identify a heretofore-unrecognized behavior of IGF-1R that appears limited to GD-derived fibroblasts. Nuclear IGF-1R may play a role in disease pathogenesis

    Further Characterisation of the Molecular Signature of Quiescent and Activated Mouse Muscle Satellite Cells

    Get PDF
    Satellite cells are the resident stem cells of adult skeletal muscle. To date though, there is a paucity of native markers that can be used to easily identify quiescent satellite cells, with Pax7 probably being the best that is currently available. Here we have further characterized a number of recently described satellite cell markers, and also describe novel ones. Caveolin-1, integrin α7 and the calcitonin receptor proved reliable markers for quiescent satellite cells, being expressed by all satellite cells identified with Pax7. These three markers remained expressed as satellite cells were activated and underwent proliferation. The nuclear envelope proteins lamin A/C and emerin, mutations in which underlie Emery-Dreifuss muscular dystrophy, were also expressed in both quiescent and proliferating satellite cells. Conversely, Jagged-1, a Notch ligand, was not expressed in quiescent satellite cells but was induced upon activation. These findings further contribute to defining the molecular signature of muscle satellite cells

    Role of β-Catenin in Post-Meiotic Male Germ Cell Differentiation

    Get PDF
    Though roles of β-catenin signaling during testis development have been well established, relatively little is known about its role in postnatal testicular physiology. Even less is known about its role in post-meiotic germ cell development and differentiation. Here, we report that β-catenin is highly expressed in post-meiotic germ cells and plays an important role during spermiogenesis in mice. Spermatid-specific deletion of β-catenin resulted in significantly reduced sperm count, increased germ cell apoptosis and impaired fertility. In addition, ultrastructural studies show that the loss of β-catenin in post-meiotic germ cells led to acrosomal defects, anomalous release of immature spermatids and disruption of adherens junctions between Sertoli cells and elongating spermatids (apical ectoplasmic specialization; ES). These defects are likely due to altered expression of several genes reportedly involved in Sertoli cell-germ cell adhesion and germ cell differentiation, as revealed by gene expression analysis. Taken together, our results suggest that β-catenin is an important molecular link that integrates Sertoli cell-germ cell adhesion with the signaling events essential for post-meiotic germ cell development and maturation. Since β-catenin is also highly expressed in the Sertoli cells, we propose that binding of germ cell β-catenin complex to β-catenin complex on Sertoli cell at the apical ES surface triggers a signaling cascade that regulates post-meiotic germ cell differentiation

    Preferences across the Menstrual Cycle for Masculinity and Symmetry in Photographs of Male Faces and Bodies

    Get PDF
    Background: Previous studies have shown that women increase their preference for masculinity during the fertile phase of the menstrual cycle. Evidence for a similar preference shift for symmetry is equivocal. These studies have required participants to choose between subtle variations in computer-generated stimuli, and preferences for more natural stimuli have not been investigated. Methodology/Principal Findings: Our study employed photographs of individual males to investigate women’s preferences for face and body masculinity and symmetry across the menstrual cycle. We collected attractiveness ratings from 25 normally cycling women at high- and low-fertility days of the menstrual cycle. Attractiveness ratings made by these women were correlated with independent ratings of masculinity and symmetry provided by different sets of raters. We found no evidence for any cyclic shift in female preferences. Correlations between attractiveness and masculinity, and attractiveness and symmetry did not differ significantly between high- and low-fertility test sessions. Furthermore, there was no significant difference between high- and low-fertility ratings of attractiveness. Conclusions: These results suggest that a menstrual cycle shift in visual preferences for masculinity and symmetry may be too subtle to influence responses to real faces and bodies, and subsequent mate-choice decisions

    The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    Get PDF
    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration
    • …
    corecore