8 research outputs found

    Bone Degeneration and Recovery after Early and Late Bisphosphonate Treatment of Ovariectomized Wistar Rats Assessed by In Vivo Micro-Computed Tomography

    Get PDF
    Bisphosphonates are antiresorptive drugs commonly used to treat osteoporosis. It is not clear, however, what the influence of the time point of treatment is. Recently developed in vivo micro-computed tomographic (CT) scanners offer the possibility to study such effects on bone microstructure in rats. The aim of this study was to determine the influence of early and late zoledronic acid treatment on bone in ovariectomized rats, using in vivo micro-CT. Twenty-nine female Wistar rats were divided into the following groups: ovariectomy (OVX, n = 5), OVX and zoledronic acid (ZOL) at week 0 (n = 8), OVX and ZOL at week 8 (n = 7), and sham (n = 9). CT scans were made of the proximal tibia at weeks 0, 2, 4, 8, 12, and 16; and bone structural parameters were determined in the metaphysis. Two fluorescent labels were administered to calculate dynamic histomorphometric parameters. At week 16, all groups were significantly different from each other in bone volume fraction (BV/TV), connectivity density, and trabecular number (Tb.N), except for the early ZOL and control groups which were not significantly different for any structural parameter. After ZOL treatment at week 8, BV/TV, structure model index, Tb.N, and trabecular thickness significantly improved in the late ZOL group. The OVX and ZOL groups showed, respectively, higher and lower bone formation rates than the control group. Early ZOL treatment inhibited all bone microstructural changes seen after OVX. Late ZOL treatment significantly improved bone microstructure, although the structure did not recover to original levels. Early ZOL treatment resulted in a significantly better microstructure than late treatment. However, late treatment was still significantly better than no treatment

    Doege-Potter syndrome presenting with hypoinsulinemic hypoglycemia in a patient with a malignant extrapleural solitary fibrous tumor: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Doege-Potter syndrome is a paraneoplastic syndrome characterized by non-islet cell tumor hypoglycemia secondary to a solitary fibrous tumor. This tumor causes hypoglycemia by the secretion of a prohormone form of insulin-like growth factor II. We describe the diagnosis and management of Doege-Potter syndrome and the use of transarterial chemoembolization in a patient with a malignant extrapleural solitary fibrous tumor.</p> <p>Case presentation</p> <p>Our patient was a 64-year-old Caucasian woman who initially presented with urinary incontinence and was found to have a 14.5×9.0×9.0cm retroperitoneal solitary fibrous tumor compressing her bladder. Her tumor was surgically resected but recurred with multiple hepatic metastatic lesions. The hepatic metastases progressed despite systemic chemotherapy and treatment with doxorubicin transarterial chemoembolization. Her course was complicated by the development of recurrent fasting hypoglycemia, most likely secondary to Doege-Potter syndrome. Her hypoglycemia was managed with corticosteroid therapy and frequent scheduled nutrient intake overnight.</p> <p>Conclusions</p> <p>The rarity of hepatic solitary fibrous tumors and consequent lack of controlled trials make this report significant in that it describes the diagnostic approach to Doege-Potter syndrome, describes our experience with the use of doxorubicin transarterial chemoembolization, and presents management options for tumor-associated hypoglycemia in the case of extensive disease not amenable to surgical resection.</p

    Osteoclast activity modulates B-cell development in the bone marrow

    No full text
    B-cell development is dependent on the interactions between B-cell precursors and bone marrow stromal cells, but the role of osteoclasts (OCLs) in this process remains unknown. B lymphocytopenia is a characteristic of osteopetrosis, suggesting a modulation of B lymphopoiesis by OCL activity. To address this question, we first rescued OCL function in osteopetrotic oc/oc mice by dendritic cell transfer, leading to a restoration of both bone phenotype and B-cell development. To further explore the link between OCL activity and B lymphopoiesis, we induced osteopetrosis in normal mice by injections of zoledronic acid (ZA), an inhibitor of bone resorption. B-cell number decreased specifically in the bone marrow of ZA-treated mice. ZA did not directly affect B-cell differentiation, proliferation and apoptosis, but induced a decrease in the expression of CXCL12 and IL-7 by stromal cells, associated with reduced osteoblastic engagement. Equivalent low osteoblastic engagement in oc/oc mice confirmed that it resulted from the reduced OCL activity rather than from a direct effect of ZA on osteoblasts. These dramatic alterations of the bone microenvironment were disadvantageous for B lymphopoiesis, leading to retention of B-cell progenitors outside of their bone marrow niches in the ZA-induced osteopetrotic model. Altogether, our data revealed that OCLs modulate B-cell development in the bone marrow by controlling the bone microenvironment and the fate of osteoblasts. They provide novel basis for the regulation of the retention of B cells in their niche by OCL activity
    corecore