728 research outputs found
Asphericity Can Cause Nonuniform Lithium Intercalation in Battery Active Particles
Uniform intercalation is desired to enable next-generation Li-ion batteries. While we expect nonuniformity in materials undergoing a phase change, single-phase intercalation materials such as nickel manganese cobalt oxide are believed to lithiate uniformly at the particle/electrolyte interface. However, recent imaging reveals nonuniform lithiation. Motivated by this discrepancy, we examine if aspherical particle shape can cause such nonuniformity since the conventional belief is based on spherical particle theory. We obtain real particle geometries using rapid lab-based X-ray computed tomography and subsequently perform physics-based calculations accounting for electrochemical reactions at the particle/electrolyte interface and lithium transport inside the particle bulk. The aspherical geometry breaks the symmetry and causes nonuniform reaction distribution. Such nonuniformity is exacerbated as the particle becomes more aspherical. The proposed mechanism represents a fundamental limit on achievable lithiation uniformity in aspherical particles in the absence of other mechanisms causing inhomogeneity, such as grain structure, nonuniform carbon-binder coating, etc
Examining the Cycling Behaviour of Li-Ion Batteries Using Ultrasonic Time-of-Flight Measurements
Diagnostic systems for Li-ion batteries have become increasingly important due to the larger size, and cost of the batteries being deployed in increasingly demanding applications, including electric vehicles. Here, ultrasound acoustic time-of-flight (ToF) analysis is conducted under a range of operating conditions. Measurements are performed on a commercial pouch cell during varying discharge rates to identify a range of effects that influence the acoustic ToF measurements. The cell was examined using X-ray computed tomography to ensure no significant defects were present and to confirm the layered structure in the region being investigated, validating the signal pattern observed. Analyses of the acoustic signals obtained suggest that stresses are generated in the electrodes during both the charge and discharge of the cell with the magnitude of Young's modulus for the component materials being both a function of the state-of-charge and applied current. Characteristic responses for both electrodes during the charge/discharge cycle highlight the potential application of the technique as a real-time diagnostic tool
Quantitative Relationships Between Pore Tortuosity, Pore Topology, and Solid Particle Morphology Using a Novel Discrete Particle Size Algorithm
To sustain the continuous high-rate charge current required for fast charging of electric vehicle batteries, the ionic effective diffusion coefficient of the electrodes must be high enough to avoid the electrode being transport limited. Tortuosity factor and porosity are the two microstructure parameters that control this effective diffusion coefficient. While different methods exist to experimentally measure or calculate the tortuosity factor, no generic relationship between tortuosity and microstructure presently exists that is applicable across a large variety of electrode microstructures and porosities. Indeed, most relationships are microstructure specific. In this work, generic relationships are established using only geometrically defined metrics that can thus be used to design thick electrodes suitable for fast charging. To achieve this objective, an original, discrete particle-size algorithm is introduced and used to identify and segment particles across a set of 19 various electrode microstructures (nickel-manganese-cobalt [NMC] and graphite) obtained from X-ray computed tomography (CT) to quantify parameters such as porosity, particle elongation, sinuosity, and constriction, which influence the effective diffusion coefficient. Compared to the widely used watershed method, the new algorithm shows less over-segmentation. Particle size obtained with different numerical methods is also compared. Lastly, microstructure-tortuosity relationship and particle size and morphology analysis methods are reviewed
An Investigation into Creep Cavity Development in 316H Stainless Steel
Creep-induced cavitation is an important failure mechanism in steel components operating at high temperature. Robust techniques are required to observe and quantify creep cavitation. In this paper, the use of two complementary analysis techniques: small-angle neutron scattering (SANS), and quantitative metallography, using scanning electron microscopy (SEM), is reported. The development of creep cavities that is accumulated under uniaxial load has been studied as a function of creep strain and life fraction, by carrying out interrupted tests on two sets of creep test specimens that are prepared from a Type-316H austenitic stainless steel reactor component. In order to examine the effects of pre-strain on creep damage formation, one set of specimens was subjected to a plastic pre-strain of 8%, and the other set had no pre-strain. Each set of specimens was subjected to different loading and temperature conditions, representative of those of current and future power plant operation. Cavities of up to 300 nm in size are quantified by using SANS, and their size distribution, as a function of determined creep strain. Cavitation increases significantly as creep strain increases throughout creep life. These results are confirmed by quantitative metallography analysis
Revealing the Hidden Details of Nanostructure in a Pharmaceutical Cream
Creams are multi-component semi-solid emulsions that find widespread utility across a wide range of pharmaceutical, cosmetic, and personal care products, and they also feature prominently in veterinary preparations and processed foodstuffs. The internal architectures of these systems, however, have to date been inferred largely through macroscopic and/or indirect experimental observations and so they are not well-characterized at the molecular level. Moreover, while their long-term stability and shelf-life, and their aesthetics and functional utility are critically dependent upon their molecular structure, there is no real understanding yet of the structural mechanisms that underlie the potential destabilizing effects of additives like drugs, anti-oxidants or preservatives, and no structure-based rationale to guide product formulation. In the research reported here we sought to address these deficiencies, making particular use of small-angle neutron scattering and exploiting the device of H/D contrast variation, with complementary studies also performed using bright-field and polarised light microscopy, small-angle and wide-angle X-ray scattering, and steady-state shear rheology measurements. Through the convolved findings from these studies we have secured a finely detailed picture of the molecular structure of creams based on Aqueous Cream BP, and our findings reveal that the structure is quite different from the generic picture of cream structure that is widely accepted and reproduced in textbooks
Study of solar-assisted thermoelectric technology for automobile air conditioning.
An analytical study was conducted to determine the feasibility of employing solar energy assisted thermoelectric (TE
Investigating nano-precipitation in a V-containing HSLA steel using small angle neutron scattering
Interphase precipitation (IPP) of nanoscale carbides in a vanadium-containing high-strength low-alloy steel has been investigated. Small angle neutron scattering (SANS) and transmission electron microscopy (TEM) were employed to characterize the precipitates and their size distributions in Fe-0.047C-0.2V-1.6Mn (in wt.%) alloy samples which had been austenitized, isothermally transformed at 700 °C for between 3 and 600 min and water quenched. TEM confirms that, following heat treatment, rows of vanadium-containing nanoscale interphase precipitates were present. Model-independent analysis of the nuclear SANS signal and model fitting calculations, using oblate spheroid and disc-shapes, were performed. The major axis diameter increased from 18 nm after 3 min to 35 nm after 600 min. Precipitate volume percent increased from 0.09 to 0.22 vol% over the same period and number density fell from 2 × 1021 to 5 × 1020 m−3. A limited number of measurements of precipitate maximum diameters from TEM images showed the mean value increased from 8 nm after 5 min to 28 nm after 600 min which is in reasonable agreement with the SANS data
- …