653 research outputs found

    On the difference-to-sum power ratio of speech and wind noise based on the Corcos model

    Full text link
    The difference-to-sum power ratio was proposed and used to suppress wind noise under specific acoustic conditions. In this contribution, a general formulation of the difference-to-sum power ratio associated with a mixture of speech and wind noise is proposed and analyzed. In particular, it is assumed that the complex coherence of convective turbulence can be modelled by the Corcos model. In contrast to the work in which the power ratio was first presented, the employed Corcos model holds for every possible air stream direction and takes into account the lateral coherence decay rate. The obtained expression is subsequently validated with real data for a dual microphone set-up. Finally, the difference-to- sum power ratio is exploited as a spatial feature to indicate the frame-wise presence of wind noise, obtaining improved detection performance when compared to an existing multi-channel wind noise detection approach.Comment: 5 pages, 3 figures, IEEE-ICSEE Eilat-Israel conference (special session

    Multi-scale aggregation of phase information for reducing computational cost of CNN based DOA estimation

    Full text link
    In a recent work on direction-of-arrival (DOA) estimation of multiple speakers with convolutional neural networks (CNNs), the phase component of short-time Fourier transform (STFT) coefficients of the microphone signal is given as input and small filters are used to learn the phase relations between neighboring microphones. Due to this chosen filter size, M−1M-1 convolution layers are required to achieve the best performance for a microphone array with M microphones. For arrays with large number of microphones, this requirement leads to a high computational cost making the method practically infeasible. In this work, we propose to use systematic dilations of the convolution filters in each of the convolution layers of the previously proposed CNN for expansion of the receptive field of the filters to reduce the computational cost of the method. Different strategies for expansion of the receptive field of the filters for a specific microphone array are explored. With experimental analysis of the different strategies, it is shown that an aggressive expansion strategy results in a considerable reduction in computational cost while a relatively gradual expansion of the receptive field exhibits the best DOA estimation performance along with reduction in the computational cost.Comment: arXiv admin note: text overlap with arXiv:1807.1172

    Modal Decomposition of Feedback Delay Networks

    Full text link
    Feedback delay networks (FDNs) belong to a general class of recursive filters which are widely used in sound synthesis and physical modeling applications. We present a numerical technique to compute the modal decomposition of the FDN transfer function. The proposed pole finding algorithm is based on the Ehrlich-Aberth iteration for matrix polynomials and has improved computational performance of up to three orders of magnitude compared to a scalar polynomial root finder. We demonstrate how explicit knowledge of the FDN's modal behavior facilitates analysis and improvements for artificial reverberation. The statistical distribution of mode frequency and residue magnitudes demonstrate that relatively few modes contribute a large portion of impulse response energy

    Eccentricities of Double Neutron Star Binaries

    Full text link
    Recent pulsar surveys have increased the number of observed double neutron stars (DNS) in our galaxy enough so that observable trends in their properties are starting to emerge. In particular, it has been noted that the majority of DNS have eccentricities less than 0.3, which are surprisingly low for binaries that survive a supernova explosion that we believe imparts a significant kick to the neutron star. To investigate this trend, we generate many different theoretical distributions of DNS eccentricities using Monte Carlo population synthesis methods. We determine which eccentricity distributions are most consistent with the observed sample of DNS binaries. In agreement with Chaurasia & Bailes (2005), assuming all double neutron stars are equally as probable to be discovered as binary pulsars, we find that highly eccentric, coalescing DNS are less likely to be observed because of their accelerated orbital evolution due to gravitational wave emission and possible early mergers. Based on our results for coalescing DNS, we also find that models with vanishingly or moderately small kicks (sigma < about 50 km/s) are inconsistent with the current observed sample of such DNS. We discuss the implications of our conclusions for DNS merger rate estimates of interest to ground-based gravitational-wave interferometers. We find that, although orbital evolution due to gravitational radiation affects the eccentricity distribution of the observed sample, the associated upwards correction factor to merger rate estimates is rather small (typically 10-40%).Comment: 9 pages, 8 figures, accepted by ApJ. Figures reduced and some content changed, references adde
    • 

    corecore