660 research outputs found

    Static and Dynamic Properties of Dissipative Particle Dynamics

    Full text link
    The algorithm for the DPD fluid, the dynamics of which is conceptually a combination of molecular dynamics, Brownian dynamics and lattice gas automata, is designed for simulating rheological properties of complex fluids on hydrodynamic time scales. This paper calculates the equilibrium and transport properties (viscosity, self-diffusion) of the thermostated DPD fluid explicitly in terms of the system parameters. It is demonstrated that temperature gradients cannot exist, and that there is therefore no heat conductivity. Starting from the N-particle Fokker-Planck, or Kramers' equation, we prove an H-theorem for the free energy, obtain hydrodynamic equations, and derive a non-linear kinetic equation (the Fokker-Planck-Boltzmann equation) for the single particle distribution function. This kinetic equation is solved by the Chapman-Enskog method. The analytic results are compared with numerical simulations.Comment: 22 pages, LaTeX, 3 Postscript figure

    Density fluctuations and single-particle dynamics in liquid lithium

    Full text link
    The single-particle and collective dynamical properties of liquid lithium have been evaluated at several thermodynamic states near the triple point. This is performed within the framework of mode-coupling theory, using a self-consistent scheme which, starting from the known static structure of the liquid, allows the theoretical calculation of several dynamical properties. Special attention is devoted to several aspects of the single-particle dynamics, which are discussed as a function of the thermodynamic state. The results are compared with those of Molecular Dynamics simulations and other theoretical approaches.Comment: 31 pages (in preprint format), 14 figures. Submitted to Phys. Rev.

    Sneutrino Mixing Phenomena

    Get PDF
    In any model with nonzero Majorana neutrino masses, the sneutrino and antisneutrino of the supersymmetric extended theory mix. We outline the conditions under which sneutrino-antisneutrino mixing is experimentally observable. The mass-splitting of the sneutrino mass eigenstates and sneutrino oscillation phenomena are considered.Comment: 12 pages, revtex + axodraw, 1 figure included. Minor change

    Genetic Risk Factors for Atypical Femoral Fractures (AFFs): A Systematic Review

    Get PDF
    Atypical femoral fractures (AFFs) are uncommon and have been associated particularly with long-term antiresorptive therapy, including bisphosphonates. Although the pathogenesis of AFFs is unknown, their identification in bisphosphonate-naĂŻve individuals and in monogenetic bone disorders has led to the hypothesis that genetic factors predispose to AFF. Our aim was to review and summarize the evidence for genetic factors in individuals with AFF. We conducted structured literature searches and hand-searching of conference abstracts/reference lists for key words relating to AFF and identified 2566 citations. Two individuals independently reviewed citations for (i) cases of AFF in monogenetic bone diseases and (ii) genetic studies in individuals with AFF. AFFs were reported in 23 individuals with the following 7 monogenetic bone disorders (gene): osteogenesis imperfecta (COL1A1/COL1A2), pycnodysostosis (CTSK), hypophosphatasia (ALPL), X-linked osteoporosis (PLS3), osteopetrosis, X-linked hypophosphatemia (PHEX), and osteoporosis pseudoglioma syndrome (LRP5). In 8 cases (35%), the monogenetic bone disorder was uncovered after the AFF occurred. Cases of bisphosphonate-naĂŻve AFF were reported in pycnodysostosis, hypophosphatasia, osteopetrosis, X-linked hypophosphatemia, and osteoporosis pseudoglioma syndrome. A pilot study in 13 AFF patients and 268 controls identified a greater number of rare variants in AFF cases using exon array analysis. A whole-exome sequencing study in 3 sisters with AFFs showed, among 37 shared genetic variants, a p.Asp188Tyr mutation in the GGPS1 gene in the mevalonate pathway, critical to osteoclast function, which is also inhibited by bisphosphonates. Two studies completed targeted ALPL gene sequencing, an ALPL heterozygous mutation was found in 1 case of a cohort of 11 AFFs, whereas the second study comprising 10 AFF cases did not find mutations in ALPL. Targeted sequencing of ALPL, COL1A1, COL1A2, and SOX9 genes in 5 cases of AFF identified a variant in COL1A2 in 1 case. These findings suggest a genetic susceptibility for AFFs.

    Constraints on the SU(3) Electroweak Model

    Full text link
    We consider a recent proposal by Dimopoulos and Kaplan to embed the electroweak SU(2)_L X U(1)_Y into a larger group SU(3)_W X SU(2) X U(1) at a scale above a TeV. This idea is motivated by the prediction for the weak mixing angle sin^2 theta_W = 1/4, which naturally appears in these models so long as the gauge couplings of the high energy SU(2) and U(1) groups are moderately large. The extended gauge dynamics results in new effective operators that contribute to four-fermion interactions and Z pole observables. We calculate the corrections to these electroweak precision observables and carry out a global fit of the new physics to the data. For SU(2) and U(1) gauge couplings larger than 1, we find that the 95% C.L. lower bound on the matching (heavy gauge boson mass) scale is 11 TeV. We comment on the fine-tuning of the high energy gauge couplings needed to allow matching scales above our bounds. The remnants of SU(3)_W breaking include multi-TeV SU(2)_L doublets with electric charge (+-2,+-1). The lightest charged gauge boson is stable, leading to cosmological difficulties.Comment: 17 pages, LaTeX, 4 figures embedded, uses JHEP.cl

    Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror

    Get PDF
    We discuss an experimental scheme to create a low-dimensional gas of ultracold atoms, based on inelastic bouncing on an evanescent-wave mirror. Close to the turning point of the mirror, the atoms are transferred into an optical dipole trap. This scheme can compress the phase-space density and can ultimately yield an optically-driven atom laser. An important issue is the suppression of photon scattering due to ``cross-talk'' between the mirror potential and the trapping potential. We propose that for alkali atoms the photon scattering rate can be suppressed by several orders of magnitude if the atoms are decoupled from the evanescent-wave light. We discuss how such dark states can be achieved by making use of circularly-polarized evanescent waves.Comment: 8 pages, 4 figure

    Evidence of two viscous relaxation processes in the collective dynamics of liquid lithium

    Full text link
    New inelastic X-ray scattering experiments have been performed on liquid lithium in a wide wavevector range. With respect to the previous measurements, the instrumental resolution, improved up to 1.5 meV, allows to accurately investigate the dynamical processes determining the observed shape of the the dynamic structure factor, S(Q,ω)S(Q,\omega). A detailed analysis of the lineshapes shows the co-existence of relaxation processes with both a slow and a fast characteristic timescales, and therefore that pictures of the relaxation mechanisms based on a simple viscoelastic model must be abandoned.Comment: 5 pages, 4 .PS figure

    Collective dynamics of liquid aluminum probed by Inelastic X-ray Scattering

    Full text link
    An inelastic X-ray scattering experiment has been performed in liquid aluminum with the purpose of studying the collective excitations at wavevectors below the first sharp diffraction peak. The high instrumental resolution (up to 1.5 meV) allows an accurate investigation of the dynamical processes in this liquid metal on the basis of a generalized hydrodynamics framework. The outcoming results confirm the presence of a viscosity relaxation scenario ruled by a two timescale mechanism, as recently found in liquid lithium.Comment: 8 pages, 7 figure
    • …
    corecore