35 research outputs found

    Cancer risk in patients with Noonan syndrome carrying a PTPN11 mutation

    Get PDF
    Noonan syndrome (NS) is characterized by short stature, facial dysmorphisms and congenital heart defects. PTPN11 mutations are the most common cause of NS. Patients with NS have a predisposition for leukemia and certain solid tumors. Data on the incidence of malignancies in NS are lacking. Our objective was to estimate the cancer risk and spectrum in patients with NS carrying a PTPN11 mutation. In addition, we have investigated whether specific PTPN11 mutations result in an increased malignancy risk. We have performed a cohort study among 297 Dutch NS patients with a PTPN11 mutation (mean age 18 years). The cancer histories were collected from the referral forms for DNA diagnostics, and by consulting the Dutch national registry of pathology and the Netherlands Cancer Registry. The reported frequencies of cancer among NS patients were compared with the expected frequencies using population-based incidence rates. In total, 12 patients with NS developed a malignancy, providing a cumulative risk for developing cancer of 23% (95% confidence interval (CI), 8–38%) up to age 55 years, which represents a 3.5-fold (95% CI, 2.0–5.9) increased risk compared with that in the general population. Hematological malignancies occurred most frequently. Two malignancies, not previously observed in NS, were found: a malignant mastocytosis and malignant epithelioid angiosarcoma. No correlation was found between specific PTPN11 mutations and cancer occurrence. In conclusion, this study provides first evidence of an increased risk of cancer in patients with NS and a PTPN11 mutation, compared with that in the general population. Our data do not warrant specific cancer surveillance

    Meta-analysis of nature conservation values in Asia & Oceania: Data heterogeneity and benefit transfer issues

    Get PDF
    We conduct a meta-analysis (MA) of around 100 studies valuing nature conservation in Asia and Oceania. Dividing our dataset into two levels of heterogeneity in terms of good characteristics (endangered species vs. nature conservation more generally) and valuation methods, we show that the degree of regularity and conformity with theory and empirical expectations is higher for the more homogenous dataset of contingent valuation of endangered species. For example, we find that willingness to pay (WTP) for preservation of mammals tends to be higher than other species and that WTP for species preservation increases with income. Increasing the degree of heterogeneity in the valuation data, however, preserves much of the regularity, and the explanatory power of some of our models is in the range of other MA studies of goods typically assumed to be more homogenous (such as water quality). Subjecting our best MA models to a simple test forecasting values for out-of-sample observations, shows median (mean) forecasting errors of 24 (46) percent for endangered species and 46 (89) percent for nature conservation more generally, approaching levels that may be acceptable in benefit transfer for policy use. We recommend that the most prudent MA practice is to control for heterogeneity in regressions and sensitivity analysis, rather than to limit datasets by non-transparent criteria to a level of heterogeneity deemed acceptable to the individual analyst. However, the trade-off will always be present and the issue of acceptable level of heterogeneity in MA is far from settle

    Heterozygous germline mutations in A2ML1 are associated with a disorder clinically related to Noonan syndrome

    No full text
    Noonan syndrome (NS) is a developmental disorder characterized by short stature, facial dysmorphisms and congenital heart defects. To date, all mutations known to cause NS are dominant, activating mutations in signal transducers of the RAS/mitogen-activated protein kinase (MAPK) pathway. In 25% of cases, however, the genetic cause of NS remains elusive, suggesting that factors other than those involved in the canonical RAS/MAPK pathway may also have a role. Here, we used family-based whole exome sequencing of a case-parent trio and identified a de novo mutation, p.(Arg802His), in A2ML1, which encodes the secreted protease inhibitor \u3b1-2-macroglobulin (A2M)-like-1. Subsequent resequencing of A2ML1 in 155 cases with a clinical diagnosis of NS led to the identification of additional mutations in two families, p.(Arg802Leu) and p.(Arg592Leu). Functional characterization of these human A2ML1 mutations in zebrafish showed NS-like developmental defects, including a broad head, blunted face and cardiac malformations. Using the crystal structure of A2M, which is highly homologous to A2ML1, we identified the intramolecular interaction partner of p.Arg802. Mutation of this residue, p.Glu906, induced similar developmental defects in zebrafish, strengthening our conclusion that mutations in A2ML1 cause a disorder clinically related to NS. This is the first report of the involvement of an extracellular factor in a disorder clinically related to RASopathies, providing potential new leads for better understanding of the molecular basis of this family of developmental diseases

    Mitochondrial dysfunction and organic aciduria in five patients carrying mutations in the Ras-MAPK pathway

    No full text
    Various syndromes of the Ras-mitogen-activated protein kinase (MAPK) pathway, including the Noonan, Cardio-Facio-Cutaneous, LEOPARD and Costello syndromes, share the common features of craniofacial dysmorphisms, heart defect and short stature. In a subgroup of patients, severe muscle hypotonia, central nervous system involvement and failure to thrive occur as well. In this study we report on five children diagnosed initially with classic metabolic and clinical symptoms of an oxidative phosphorylation disorder. Later in the course of the disease, the children presented with characteristic features of Ras-MAPK pathway-related syndromes, leading to the reevaluation of the initial diagnosis. In the five patients, in addition to the oxidative phosphorylation disorder, disease-causing mutations were detected in the Ras-MAPK pathway. Three of the patients also carried a second, mitochondrial genetic alteration, which was asymptomatically present in their healthy relatives. Did we miss the correct diagnosis in the first place or is mitochondrial dysfunction directly related to Ras-MAPK pathway defects? The Ras-MAPK pathway is known to have various targets, including proteins in the mitochondrial membrane influencing mitochondrial morphology and dynamics. Prospective screening of 18 patients with various Ras-MAPK pathway defects detected biochemical signs of disturbed oxidative phosphorylation in three additional children. We concluded that only a specific, metabolically vulnerable sub-population of patients with Ras-MAPK pathway mutations presents with mitochondrial dysfunction and a more severe, early-onset disease. We postulate that patients with Ras-MAPK mutations have an increased susceptibility, but a second metabolic hit is needed to cause the clinical manifestation of mitochondrial dysfunction
    corecore