156 research outputs found

    Evolution of a coherent array of Bose-Einstein Condensates in a magnetic trap

    Full text link
    We investigate the evolution process of the interference pattern for a coherent array of Bose-Einstein condensates in a magnetic trap after the optical lattices are switched off. It is shown that there is a decay and revival of the density oscillation for the condensates confined in the magnetic trap. We find that, due to the confinement of the magnetic trap, the interference effect is much stronger than that of the experiment induced by Pedri et al. (Phys. Rev. Lett, {\bf 87}, 220401), where the magnetic trap is switched off too. The interaction correction to the interference effect is also discussed for the density distribution of the central peak.Comment: RevTex, 17 pages,9 figures. E-mail: [email protected]

    Asymmetric gap soliton modes in diatomic lattices with cubic and quartic nonlinearity

    Full text link
    Nonlinear localized excitations in one-dimensional diatomic lattices with cubic and quartic nonlinearity are considered analytically by a quasi-discreteness approach. The criteria for the occurence of asymmetric gap solitons (with vibrating frequency lying in the gap of phonon bands) and small-amplitude, asymmetric intrinsic localized modes (with the vibrating frequency being above all the phonon bands) are obtained explicitly based on the modulational instabilities of corresponding linear lattice plane waves. The expressions of particle displacement for all these nonlinear localized excitations are also given. The result is applied to standard two-body potentials of the Toda, Born-Mayer-Coulomb, Lennard-Jones, and Morse type. The comparison with previous numerical study of the anharmonic gap modes in diatomic lattices for the standard two-body potentials is made and good agreement is found.Comment: 24 pages in Revtex, 2 PS figure

    Enhanced thermal stability and electrical behavior of Zn-doped Sb2Te films for phase change memory application

    No full text
    Zn-doped Sb₂Te films are proposed to present the feasibility for phase-change memory application. Zn atoms are found to significantly increase crystallization temperature of Zn x (Sb₂Te)1−x films and be almost linearly with the wide range of Zn-doping concentration from x = 0 to 29.67 at.%. Crystalline resistances are enhanced by Zn-doping, while keeping the large amorphous/crystalline resistance ratio almost constant at ∼10⁵. Especially, the Zn 26.07 (Sb₂Te)73.93 and Zn 29.67 (Sb₂Te)70.33 films exhibit a larger resistance change, faster crystallization speed, and better thermal stability due to the formation of amorphous Zn-Sb and Zn-Te phases as well as uniform distribution of Sb₂Te crystalline grains

    Phase change behaviors of Zn-doped Ge2Sb2Te5 films

    No full text
    This work was financially supported by the Program for New Century Excellent Talents in University (Grant No. NCET-10-0976), the International Science & Technology Cooperation Program of China (Grant No. 2011DFA12040), the National Program on Key Basic Research Project (973 Program) (Grant No. 2012CB722703), the Natural Science Foundation of China (Grant Nos. 61008041 and 60978058), the Natural Science Foundation of Zhejiang Province, China (Grant No. Y1090996), the Natural Science Foundation of Ningbo City, China (Grant No. 2011A610092), the Program for Innovative Research Team of Ningbo city (Grant No. 2009B21007), and sponsored by K. C. Wong Magna Fund in Ningbo University

    Improved phase-change characteristics of Zn-doped amorphous Sb₇Te₃ films for high-speed and low-power phase change memory

    No full text
    The superior performance of Zn-doped Sb₇Te₃ films might be favorable for the application in phase change memory. It was found that Zn dopants were able to suppress phase separation and form single stable Sb2Te crystal grain, diminish the grain size, and enhance the amorphous thermal stability of Sb₇Te₃ film. Especially, Zn 30.19(Sb₇Te₃)69.81 film has higher crystallization temperature (∼258 °C), larger crystallization activation energy (∼4.15 eV), better data retention (∼170.6 °C for 10 yr), wider band gap (∼0.73 eV), and higher crystalline resistance. The minimum times for crystallization of Zn 30.19(Sb₇Te₃)69.81 were revealed to be as short as ∼10 ns at a given proper laser power of 70 mW.This work was financially supported by the International Science & Technology Cooperation Program of China (Grant No. 2011DFA12040), the National Program on Key Basic Research Project (973 Program) (Grant No. 2012CB722703), the Natural Science Foundation of China (Grant Nos. 61008041 and 60978058), the CAS Special Grant for Postgraduate Research, Innovation and Practice, the Program for Innovative Research Team of Ningbo city (Grant No. 2009B21007), and sponsored by K. C. Wong Magna Fund in Ningbo University

    Model development of the Aquistore CO2 storage project

    Get PDF
    AbstractThe Plains CO2 Reduction (PCOR) Partnership, through the Energy & Environmental Research Center, is collaborating with Petroleum Technology Research Centre in site characterization; risk assessment; public outreach; and monitoring, verification, and accounting activities at the Aquistore project. The PCOR Partnership constructed a static geological model to assess the potential volumetric storage capacity of the Aquistore site and provide the foundation for dynamic simulation for the dynamic CO2 storage capacity. Results of the predictive simulations will be used in the risk assessment process to define an overall monitoring plan and assure stakeholders that the injected CO2 will remain safely stored

    Anomalous particle-number fluctuations in a three-dimensional interacting Bose-Einstein condensate

    Full text link
    The particle-number fluctuations originated from collective excitations are investigated for a three-dimensional, repulsively interacting Bose-Einstein condensate (BEC) confined in a harmonic trap. The contribution due to the quantum depletion of the condensate is calculated and the explicit expression of the coefficient in the formulas denoting the particle-number fluctuations is given. The results show that the particle-number fluctuations of the condensate follow the law N22/15 \sim N^{22/15} and the fluctuations vanish when temperature approaches to the BEC critical temperature.Comment: RevTex, 4 page

    Interference pattern of Bose-condensed gas in a 2D optical lattice

    Full text link
    For the Bose-condensed gas confined in a magnetic trap and in a two-dimensional optical lattice, the non-uniform distribution of atoms in different lattice sites is considered based on Gross-Pitaevskii equation. A propagator method is used to investigate the time evolution of 2D interference patterns after (i)only the optical lattice is swithed off, and (ii)both the optical lattice and the magnetic trap are swithed off. An analytical description on the motion of side peaks in the interference patterns is presented by using the density distribution in a momentum space.Comment: PDF, four figures, E-mail: [email protected], to appear in J.Phys.

    Modeling acid-gas generation from boiling chloride brines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate.</p> <p>Results</p> <p>Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies.</p> <p>Conclusion</p> <p>The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent expected conditions in an emplacement drift, but nevertheless illustrate the potential for acid-gas generation at moderate temperatures (<150°C).</p
    corecore