43 research outputs found
Закономерности изменения физико-механических свойств сплава Zr-1%Nb при комплексном ионно-плазменном модифицировании поверхности и наводороживании
В работе были изучены особенности изменения морфологии, структуры и физико-механических свойств циркониевого сплава Zr-1%Nb, подвергнутого комплексному ионно-плазменному модифицированию поверхности методами плазменно-иммерсионной ионной имплантации титана и осаждения покрытий нитрида титана. Показана высокая эффективность защиты сформированных структур от проникновения водорода в циркониевый сплав. Изучены механизмы сорбции и захвата водорода в титансодержащем модифицированном слое.In the present work, the features of the change in the morphology, structure, and physico-mechanical properties of zirconium alloy Zr-1%Nb subjected to complex ion-plasma surface modification by the methods of plasma-immersion titanium ion implantation and deposition of titanium nitride coatings were studied. The high protective properties of the formed structures against hydrogen permeation into the zirconium alloy is shown. Mechanisms of sorption and capture of hydrogen in a titanium-doped modified layer are studied
Low-dose renin inhibitor and low-dose AT(1)-receptor blocker therapy ameliorate target-organ damage in rats harbouring human renin and angiotensinogen genes
We studied the effects of extremely low-dose human renin inhibition (aliskiren) with low angiotensin II receptor blockade (losartan) in a novel double-transgenic rat model harbouring both human renin and angiotensinogen genes. We found that low-dose aliskiren and low-dose losartan effectively reduced mortality and target-organ damage with minimal, non-significant, effects on blood pressure (BP). Our data suggest that renin-angiotensin system (RAS) inhibition ameliorates target-organ damage in an Ang II-driven model of hypertension. Direct renin inhibition is equally efficacious in this regard. Our study does not fully answer the question of BP-lowering versus RAS inhibition. This question is important and was at least partially addressed with our low-dose model
Complement activation in angiotensin II-induced organ damage
We tested whether or not complement activation participates in angiotensin (Ang) II-induced vasculopathy. We used double transgenic rats harboring human renin and angiotensinogen genes (dTGR) with or without losartan or the human renin inhibitor aliskiren. Sprague-Dawley (SD) rats were controls. DTGR had increased blood pressure at week 5 that increased further by week 7. Albuminuria was absent at week 5 but increased markedly in weeks 6 and 7. C-reactive protein (CRP) elevation, macrophages, T cells, tumor necrosis factor (TNF)-α, C1q, C3, C3c, and C5b-9 expression preceded albuminuria. C1q, C3, C3c, and C5b-9 were observed in the dTGR vessel media. C5b-9 colocalized with interleukin (IL)-6. Losartan and aliskiren reduced albuminuria and complement expression. We also studied vascular smooth muscle cells (VSMC) from dTGR compared VSMC from SD. C3 and IL-6 mRNA were analyzed after Ang II, TNF-α, and CRP stimulation. VSMC from dTGR showed increased proliferation and C3 expression compared with SD. Ang II did not induce C3 mRNA in either VSMC type. However, TNF-α and CRP induced C3 mRNA slightly in SD VSMC but markedly in dTGR VSMC, whereas IL-6 induction was similar in both. Thus, complement activation and cell infiltration occurred before the onset of albuminuria in Ang II-mediated renal damage. TNF-α and CRP played a major role in C3 activation. VSMC from dTGR are more sensitive for C3 activation. Our data show that, in this Ang II-induced model, complement activation is a major participant and suggest that TNF-α and CRP may play a role in its induction
Murine pre-eclampsia induced by unspecific activation of the immune system correlates with alterations in the eNOS and AT1 receptor expression in the kidneys and placenta
It remains arguable if an animal model can be of use in pre-eclampsia (PE) studies, as it is clearly a human disease not observed spontaneously in other species. The aim of this study was to investigate whether PE-like signs in mice inoculated with activated Th1 cells were accompanied by abnormal expression of molecules related to the regulation of blood pressure, viz. nitric oxide synthase enzymes (eNOS and iNOS) and angiotensin (Ang) II receptors (AT1R and AT2R), in order to analyse the relevance of this model for human disease. In this model, C57/BL6-mated BALB/c females received lymphocytes crosslined with anti-CD3 and cultured with interleukin (IL)-2 and IL-12 to mimic PE pathology. Control mice received PBS. eNOS, iNOS and AT1R but not AT2R expression was augmented in the kidneys of PE-mice compared with control pregnant mice. The expression of eNOS but not of iNOS was augmented at the fetal-maternal interface of PE-mice as compared with the controls. NOSs regulate the synthesis of NO, a blood pressure and parturition mediator. As its expression is increased in PE patients, our data suggest that the Th1 cells-induced signs in this model are due to similar mechanisms as in humans. AT1R and AT2R mediate the effect of Ang II, and particularly the AT1R appears to be involved in the pathogenesis of human PE. The increased AT1R expression in the kidneys of PE-mice reinforces the theory that Th1 cells elicit a pathological situation closely resembling the human PE. All together, our data support the use of this animal model to study mechanisms underlying clinically overt PE