211 research outputs found

    Astrophysical Uncertainties in the Cosmic Ray Electron and Positron Spectrum From Annihilating Dark Matter

    Full text link
    In recent years, a number of experiments have been conducted with the goal of studying cosmic rays at GeV to TeV energies. This is a particularly interesting regime from the perspective of indirect dark matter detection. To draw reliable conclusions regarding dark matter from cosmic ray measurements, however, it is important to first understand the propagation of cosmic rays through the magnetic and radiation fields of the Milky Way. In this paper, we constrain the characteristics of the cosmic ray propagation model through comparison with observational inputs, including recent data from the CREAM experiment, and use these constraints to estimate the corresponding uncertainties in the spectrum of cosmic ray electrons and positrons from dark matter particles annihilating in the halo of the Milky Way.Comment: 21 pages, 9 figure

    The Leptonic Higgs as a Messenger of Dark Matter

    Full text link
    We propose that the leptonic cosmic ray signals seen by PAMELA and ATIC result from the annihilation or decay of dark matter particles via states of a leptonic Higgs doublet to τ\tau leptons, linking cosmic ray signals of dark matter to LHC signals of the Higgs sector. The states of the leptonic Higgs doublet are lighter than about 200 GeV, yielding large τˉτ\bar{\tau} \tau and τˉττˉτ\bar{\tau} \tau \bar{\tau} \tau event rates at the LHC. Simple models are given for the dark matter particle and its interactions with the leptonic Higgs, for cosmic ray signals arising from both annihilations and decays in the galactic halo. For the case of annihilations, cosmic photon and neutrino signals are on the verge of discovery.Comment: 34 pages, 9 figures, minor typos corrected, references adde

    Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB

    Full text link
    Supersymmetric models based on anomaly-mediated SUSY breaking (AMSB) generally give rise to a neutral wino as a WIMP cold dark matter (CDM) candidate, whose thermal abundance is well below measured values. Here, we investigate four scenarios to reconcile AMSB dark matter with the measured abundance: 1. non-thermal wino production due to decays of scalar fields ({\it e.g} moduli), 2. non-thermal wino production due to decays of gravitinos, 3. non-thermal wino production due to heavy axino decays, and 4. the case of an axino LSP, where the bulk of CDM is made up of axions and thermally produced axinos. In cases 1 and 2, we expect wino CDM to constitute the entire measured DM abundance, and we investigate wino-like WIMP direct and indirect detection rates. Wino direct detection rates can be large, and more importantly, are bounded from below, so that ton-scale noble liquid detectors should access all of parameter space for m_{\tz_1}\alt 500 GeV. Indirect wino detection rates via neutrino telescopes and space-based cosmic ray detectors can also be large. In case 3, the DM would consist of an axion plus wino admixture, whose exact proportions are very model dependent. In this case, it is possible that both an axion and a wino-like WIMP could be detected experimentally. In case 4., we calculate the re-heat temperature of the universe after inflation. In this case, no direct or indirect WIMP signals should be seen, although direct detection of relic axions may be possible. For each DM scenario, we show results for the minimal AMSB model, as well as for the hypercharged and gaugino AMSB models.Comment: 29 pages including 13 figure

    General Gauge Mediation at the Weak Scale

    Get PDF
    We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to mhm_h coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.Comment: 43 pages, 20 figures, mathematica package included in the sourc

    Two component dark matter

    Full text link
    We explain the PAMELA positron excess and the PPB-BETS/ATIC e+ + e- data using a simple two component dark matter model (2DM). The two particle species in the dark matter sector are assumed to be in thermal equilibrium in the early universe. While one particle is stable and is the present day dark matter, the second one is metastable and decays after the universe is 10^-8 s old. In this model it is simple to accommodate the large boost factors required to explain the PAMELA positron excess without the need for large spikes in the local dark matter density. We provide the constraints on the parameters of the model and comment on possible signals at future colliders.Comment: 6 pages, 2 figures, discussion clarified and extende

    Sparticle masses in deflected mirage mediation

    Full text link
    We discuss the sparticle mass patterns that can be realized in deflected mirage mediation scenario of supersymmetry breaking, in which the moduli, anomaly, and gauge mediations all contribute to the MSSM soft parameters. Analytic expression of low energy soft parameters and also the sfermion mass sum rules are derived, which can be used to interpret the experimentally measured sparticle masses within the framework of the most general mixed moduli-gauge-anomaly mediation. Phenomenological aspects of some specific examples are also discussed.Comment: 43 pages, 17 figures, references adde

    Dark matter and sub-GeV hidden U(1) in GMSB models

    Full text link
    Motivated by the recent PAMELA and ATIC data, one is led to a scenario with heavy vector-like dark matter in association with a hidden U(1)XU(1)_X sector below GeV scale. Realizing this idea in the context of gauge mediated supersymmetry breaking (GMSB), a heavy scalar component charged under U(1)XU(1)_X is found to be a good dark matter candidate which can be searched for direct scattering mediated by the Higgs boson and/or by the hidden gauge boson. The latter turns out to put a stringent bound on the kinetic mixing parameter between U(1)XU(1)_X and U(1)YU(1)_Y: θ106\theta \lesssim 10^{-6}. For the typical range of model parameters, we find that the decay rates of the ordinary lightest neutralino into hidden gauge boson/gaugino and photon/gravitino are comparable, and the former decay mode leaves displaced vertices of lepton pairs and missing energy with distinctive length scale larger than 20 cm for invariant lepton pair mass below 0.5 GeV. An unsatisfactory aspect of our model is that the Sommerfeld effect cannot raise the galactic dark matter annihilation by more than 60 times for the dark matter mass below TeV.Comment: 1+15 pages, 4 figures, version published in JCAP, references added, minor change

    General Analysis of Antideuteron Searches for Dark Matter

    Full text link
    Low energy cosmic ray antideuterons provide a unique low background channel for indirect detection of dark matter. We compute the cosmic ray flux of antideuterons from hadronic annihilations of dark matter for various Standard Model final states and determine the mass reach of two future experiments (AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron detection over current bounds. We consider generic models of scalar, fermion, and massive vector bosons as thermal dark matter, describe their basic features relevant to direct and indirect detection, and discuss the implications of direct detection bounds on models of dark matter as a thermal relic. We also consider specific dark matter candidates and assess their potential for detection via antideuterons from their hadronic annihilation channels. Since the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we find that antideuterons can be a good indirect detection channel for a variety of thermal relic electroweak scale dark matter candidates, even when the rate for direct detection is highly suppressed.Comment: 44 pages, 15 Figure
    corecore