32,393 research outputs found
Transport of quantum noise through random media
We present an experimental study of the propagation of quantum noise in a
multiple scattering random medium. Both static and dynamic scattering
measurements are performed: the total transmission of noise is related to the
mean free path for scattering, while the noise frequency correlation function
determines the diffusion constant. The quantum noise observables are found to
scale markedly differently with scattering parameters compared to classical
noise observables. The measurements are explained with a full quantum model of
multiple scattering
Excess mortality during heat waves in Ireland
Ireland is not known for having extreme high temperatures, with values above 30C uncommon. Ireland has significant excess winter mortality compared to summer. The objective of this study is to estimate the impact of nation-wide heat waves on the total, cardiovascular and respiratory relationship, for the period 1981–2003, to determine if there are any periods of excess summer mortality
Helical Magnetorotational Instability in Magnetized Taylor-Couette Flow
Hollerbach and Rudiger have reported a new type of magnetorotational
instability (MRI) in magnetized Taylor-Couette flow in the presence of combined
axial and azimuthal magnetic fields. The salient advantage of this "helical''
MRI (HMRI) is that marginal instability occurs at arbitrarily low magnetic
Reynolds and Lundquist numbers, suggesting that HMRI might be easier to realize
than standard MRI (axial field only). We confirm their results, calculate HMRI
growth rates, and show that in the resistive limit, HMRI is a weakly
destabilized inertial oscillation propagating in a unique direction along the
axis. But we report other features of HMRI that make it less attractive for
experiments and for resistive astrophysical disks. Growth rates are small and
require large axial currents. More fundamentally, instability of highly
resistive flow is peculiar to infinitely long or periodic cylinders: finite
cylinders with insulating endcaps are shown to be stable in this limit. Also,
keplerian rotation profiles are stable in the resistive limit regardless of
axial boundary conditions. Nevertheless, the addition of toroidal field lowers
thresholds for instability even in finite cylinders.Comment: 16 pages, 2 figures, 1 table, submitted to PR
The Spectral Correlation Function -- A New Tool for Analyzing Spectral-Line Maps
The "spectral correlation function" analysis we introduce in this paper is a
new tool for analyzing spectral-line data cubes. Our initial tests, carried out
on a suite of observed and simulated data cubes, indicate that the spectral
correlation function [SCF] is likely to be a more discriminating statistic than
other statistical methods normally applied. The SCF is a measure of similarity
between neighboring spectra in the data cube. When the SCF is used to compare a
data cube consisting of spectral-line observations of the ISM with a data cube
derived from MHD simulations of molecular clouds, it can find differences that
are not found by other analyses. The initial results presented here suggest
that the inclusion of self-gravity in numerical simulations is critical for
reproducing the correlation behavior of spectra in star-forming molecular
clouds.Comment: 29 pages, including 4 figures (tar file submitted as source) See
also: http://cfa-www.harvard.edu/~agoodman/scf/velocity_methods.htm
Overcomplete steerable pyramid filters and rotation invariance
A given (overcomplete) discrete oriented pyramid may be converted into a steerable pyramid by interpolation. We present a technique for deriving the optimal interpolation functions (otherwise called 'steering coefficients'). The proposed scheme is demonstrated on a computationally efficient oriented pyramid, which is a variation on the Burt and Adelson (1983) pyramid. We apply the generated steerable pyramid to orientation-invariant texture analysis in order to demonstrate its excellent rotational isotropy. High classification rates and precise rotation identification are demonstrated
Formation of Giant Planets by Concurrent Accretion of Solids and Gas inside an Anti-Cyclonic Vortex
We study the formation of a giant gas planet by the core--accretion
gas--capture process, with numerical simulations, under the assumption that the
planetary core forms in the center of an anti-cyclonic vortex. The presence of
the vortex concentrates particles of centimeter to meter size from the
surrounding disk, and speeds up the core formation process. Assuming that a
planet of Jupiter mass is forming at 5 AU from the star, the vortex enhancement
results in considerably shorter formation times than are found in standard
core--accretion gas--capture simulations. Also, formation of a gas giant is
possible in a disk with mass comparable to that of the minimum mass solar
nebula.Comment: 27 pages, 4 figures, ApJ in pres
Monitoring spatially heterogeneous dynamics in a drying colloidal thin film
We report on a new type of experiment that enables us to monitor spatially
and temporally heterogeneous dynamic properties in complex fluids. Our approach
is based on the analysis of near-field speckles produced by light diffusely
reflected from the superficial volume of a strongly scattering medium. By
periodic modulation of an incident speckle beam we obtain pixel-wise ensemble
averages of the structure function coefficient, a measure of the dynamic
activity. To illustrate the application of our approach we follow the different
stages in the drying process of a colloidal thin film. We show that we can
access ensemble averaged dynamic properties on length scales as small as ten
micrometers over the full field of view.Comment: To appear in Soft Material
- …
