235 research outputs found

    Atidarsagene autotemcel for metachromatic leukodystrophy

    Get PDF
    Metachromatic leukodystrophy (MLD) is a rare autosomal recessive disorder of sphingolipid metabolism, due to a deficiency of the enzyme arylsulfatase A (ARSA). The main clinical signs of the disease are secondary to central and peripheral nervous system demyelination. MLD is subdivided into early and lateonset subtypes based upon the onset of neurological disease. The earlyonset subtype is associated with a more rapid progression of the disease that leads to death within the first decade of life. Until recently, no effective treatment was available for MLD. The blood–brain barrier (BBB) prevents systemically administered enzyme replacement therapy from reaching target cells in MLD. The evidence for the efficacy of hematopoietic stem cell transplantation is limited to the lateonset MLD subtype. Here, we review the preclinical and clinical studies that facilitated the approval of the ex vivo gene therapy atidarsagene autotemcel for earlyonset MLD by the European Medicines Agency (EMA) in December 2020. This approach was studied in an animal model first and then in a clinical trial, eventually proving its efficacy in preventing disease manifestations in presymptomatic patients and stabilizing its progression in paucisymptomatic subjects. This new therapeutic consists of patients’ CD34+ hematopoietic stem/progenitor cells (HSPCs) transduced with a lentiviral vector encoding functional ARSA cDNA. The genecorrected cells get reinfused into the patients after a cycle of chemotherapy conditioning

    Rab35 controls formation of luminal projections required for bile canalicular morphogenesis

    Get PDF
    Hepatocytes display a unique biaxial polarity with shared apical luminal connections between adjacent hepatocytes that merge into a network of bile canaliculi. Belicova et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202103003) discovered that hepatocyte apical membranes generate Rab35-dependent extensions that traverse the lumen and are essential for bile canalicular formation and maintenance

    Delivering efficient liver-directed AAV-mediated gene therapy.

    Get PDF
    Adeno-associated virus vectors (AAV) have become the leading technology for liver-directed gene therapy. After the pioneering trials using AAV2 and AAV8 to treat haemophilia B, D’Avola et al. recently reported the first-in-human clinical trial of adeno-associated virus vector serotype 5 (AAV5) in acute intermittent porphyria (AIP). Treatment was reported as safe, but the main surrogate biomarkers of AIP, porphobilinogen (PBG) and delta-aminolevulinate (ALA) were unchanged. This lack of efficacy contrasts with results from the haemophilia B trial using AAV8 capsid by Nathwani et al., which showed a significant and long-lasting improvement of the clinical phenotype. Haemophilia B is an amenable target for successful gene therapy as raising expression of plasma factor IX (FIX) level above 1% can modify the phenotype from severe to moderate. Development of a variety of capsids for clinical application is useful to overcome pre-existing neutralising antibodies. The differences in cell-specific transduction by different AAV serotypes are primarily owing to specificities in cellular uptake or post cell-entry processing. Indeed AAV5 presents several theoretical advantages as an alternative capsid to AAV8 for liver-directed gene therapy: suitable liver tropism, less off-target biodistribution, low seroprevalence in humans and minimal cross-reactivity with other serotypes

    VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function

    Get PDF
    Mutations in VPS33B and VIPAS39 cause the severe multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis (ARC) syndrome. Amongst other symptoms, patients with ARC syndrome suffer from severe ichthyosis. Roles for VPS33B and VIPAR have been reported in lysosome-related organelle biogenesis, integrin recycling, collagen homeostasis and maintenance of cell polarity. Mouse knockouts of Vps33b or Vipas39 are good models of ARC syndrome and develop an ichthyotic phenotype. We demonstrate that the skin manifestations in Vps33b and Vipar deficient mice are histologically similar to those of patients with ARC syndrome. Histological, immunofluorescent and electron microscopic analysis of Vps33b and Vipar deficient mouse skin biopsies and isolated primary cells showed that epidermal lamellar bodies, which are essential for skin barrier function, had abnormal morphology and the localisation of lamellar body cargo was disrupted. Stratum corneum formation was affected, with increased corneocyte thickness, decreased thickness of the cornified envelope and reduced deposition of lipids. These defects impact epidermal homeostasis and lead to abnormal barrier formation causing the skin phenotype in Vps33b and Vipar deficient mice and patients with ARC syndrome

    Clinical applications for exosomes: are we there yet?

    Get PDF
    Exosomes are a subset of extracellular vesicles essential for cell‐cell communication in health and disease with the ability to transport nucleic acids, functional proteins and other metabolites. Their clinical use as diagnostic biomarkers and therapeutic carriers has become a major field of research over recent years, generating rapidly expanding scientific interest and financial investment. Their reduced immunogenicity compared to liposomes or viral vectors and their ability to cross major physiological barriers like the blood‐brain barrier make them an appealing and innovative option as biomarkers and therapeutic agents. Here, we review the latest clinical developments of exosome biotechnology for diagnostic and therapeutic purposes, including the most recent COVID‐19 related exosome‐based clinical trials. We present current exosome engineering strategies for optimal clinical safety and efficacy and assess the technology developed for GMP compliant scaling up and storage approaches along with their limitations in pharmaceutical industry

    Structural and functional hepatocyte polarity and liver disease

    Get PDF
    Hepatocytes form a crucially important cell layer that separates sinusoidal blood from the canalicular bile. They have a uniquely organized polarity with a basal membrane facing liver sinusoidal endothelial cells, while one or more apical poles can contribute to several bile canaliculi jointly with the directly opposing hepatocytes. Establishment and maintenance of hepatocyte polarity is essential for many functions of hepatocytes and requires carefully orchestrated cooperation between cell adhesion molecules, cell junctions, cytoskeleton, extracellular matrix and intracellular trafficking machinery. The process of hepatocyte polarization requires energy and, if abnormal, may result in severe liver disease.A number of inherited disorders affecting tight junction and intracellular trafficking proteins have been described and demonstrate clinical and pathophysiological features overlapping those of the genetic cholestatic liver diseases caused by defects in canalicular ABC transporters. Thus both structural and functional components contribute to the final hepatocyte polarity phenotype. Many acquired liver diseases target factors that determine hepatocyte polarity, such as junctional proteins. Hepatocyte depolarization frequently occurs but is rarely recognized because hematoxylin-eosin staining does not identify the bile canaliculus. However, the molecular mechanisms underlying these defects are not well understood. Here we aim to provide an update on the key factors determining hepatocyte polarity and how it is affected in inherited and acquired diseases

    Diagnostic tests for Niemann-Pick disease type C (NP-C): A critical review

    Get PDF
    Niemann-Pick disease type C (NP-C) is a neurovisceral lysosomal cholesterol trafficking and lipid storage disorder caused by mutations in one of the two genes, NPC1 or NPC2. Diagnosis has often been a difficult task, due to the wide range in age of onset of NP-C and clinical presentation of the disease, combined with the complexity of the cell biology (filipin) laboratory testing, even in combination with genetic testing. This has led to substantial delays in diagnosis, largely depending on the access to specialist centres and the level of knowledge about NP-C of the physician in the area. In recent years, advances in mass spectrometry has allowed identification of several sensitive plasma biomarkers elevated in NP-C (e.g. cholestane-3ÎČ,5α,6ÎČ-triol, lysosphingomyelin isoforms and bile acid metabolites), which, together with the concomitant progress in molecular genetic technology, have greatly impacted the strategy of laboratory testing. Specificity of the biomarkers is currently under investigation and other pathologies are being found to also result in elevations. Molecular genetic testing also has its limitations, notably with unidentified mutations and the classification of new variants. This review is intended to increase awareness on the currently available approaches to laboratory diagnosis of NP-C, to provide an up to date, comprehensive and critical evaluation of the various techniques (cell biology, biochemical biomarkers and molecular genetics), and to briefly discuss ongoing/future developments. The use of current tests in proper combination enables a rapid and correct diagnosis in a large majority of cases. However, even with recent progress, definitive diagnosis remains challenging in some patients, for whom combined genetic/biochemical/cytochemical markers do not provide a clear answer. Expertise and reference laboratories thus remain essential, and further work is still required to fulfill unmet needs

    Urine Proteomics Analysis of Patients with Neuronal Ceroid Lipofuscinoses

    Get PDF
    The Neuronal Ceroid Lipofuscinoses (NCL) are a group of 13 rare neurodegenerative disorders characterised by accumulation of cellular storage bodies. There are few therapeutic options and existing tests do not monitor disease progression and treatment response. However, urine biomarkers could address this need. Proteomic analysis of CLN2 patient urine revealed activation of immune response pathways and pathways associated with the unfolded protein response. Analysis of CLN5 and CLN6 sheep model urine showed subtle changes. To confirm and investigate the relevance of candidate biomarkers a targeted LC-MS/MS proteomic assay was created. We applied this assay to additional CLN2 samples as well as other NCL patients, (CLN1, CLN3, CLN5, CLN6 and CLN7) and demonstrated that Hexosaminidase-A, Aspartate Aminotransferase-1 and LAMP1, are increased in NCL samples and betaine-homocysteine S-methyltransferase-1 was specifically increased in CLN2 patients. These proteins could be used to monitor effectiveness of future therapies aimed at treating systemic NCL disease

    Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development

    Get PDF
    Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years
    • 

    corecore