187 research outputs found

    NEEMO 15: Evaluation of Human Exploration Systems for Near-Earth Asteroids

    Get PDF
    The NASA Extreme Environment Mission Operations (NEEMO) 15 mission was focused on near-Earth Asteroid (NEA) exploration techniques evaluation. It began with a University of Delaware autonomous underwater vehicle (AUV) systematically mapping the coral reef for hundreds of meters surrounding the Aquarius habitat. This activity is akin to the type of "far field survey" approach that may be used by a robotic precursor in advance of a human mission to a NEA. Data from the far-field survey were then examined by the NEEMO science team and follow-up exploration traverses were planned, which used Deepworker single-person submersibles. Science traverses at NEEMO 15 were planned according to a prioritized list of scientific objectives developed by the science team based on review and discussion of previous related marine science research including previous marine science saturation missions conducted at the Aquarius habitat. AUV data was used to select several areas of scientific interest. The Deepworker science traverses were then executed at these areas of interest during 4 days of the NEEMO 15 mission and provided higher resolution data such as coral species distribution and mortality. These traverses are analogous to the "near field survey" approach that is expected to be performed by a multi mission space exploration vehicle (MMSEV) during a human mission to a NEA before conducting extravehicular activities (EVA)s. In addition to the science objectives that were pursued, the NEEMO 15 science traverses provided an opportunity to test newly developed software and techniques. Sample collection and instrument deployment on the NEA surface by EVA crew would follow the "near field survey" in a human NEA mission. Sample collection was not necessary for the purposes of the NEEMO science objectives; however, the engineering and operations objectives during NEEMO 15 were to evaluate different combinations of vehicles, crewmembers, tools, and equipment that could be used to perform these tasks on a NEA. Specifically, the productivity and acceptability of simulated NEA exploration activities were systematically quantified and compared when operating with different combinations of crew sizes and exploration systems including MMSEVs, EVA jet packs, and EVA translation devices

    Microconical interface fitting and interface grasping tool

    Get PDF
    A small and light weight microconical interface fitting may be attached to the surface of a space vehicle or equipment to provide an attachment device for an astronaut or robot to capture the space vehicle or equipment. The microconical interface fitting of the present invention has an axisymmetrical conical body having a base portion with a torque reaction surface for preventing rotation of the interface grasping tool; a cavitated, sunken or hollowed out intermediate locking portion which has a cavity shaped for receiving the latches of the grasping tool and an upper guiding portion for guiding the grasping tool into axial alignment with the microconical interface fitting. The capture is accomplished with an interface grasping tool. The grasping tool comprises an outer sleeve with a handle attached, an inner sleeve which may be raised and lowered within the outer sleeve with a plurality of latches supported at the lower end and a cam to raise and lower the inner sleeve. When the inner sleeve is at its lowest position, the latches form the largest diameter opening for surrounding the microconical fitting and the latches form the smallest diameter or a locking, grasping position when raised to the highest position within the outer sleeve. The inner sleeve may be at an intermediate, capture position which permits the latches to be biased outwardly when contacting the microconical fitting under very low forces to grasp the fitting and permits capture (soft docking) without exact alignment of the fitting and the tool

    Gender Consideration in Experiment Design for Air Break in Prebreathe

    Get PDF
    If gender is a confounder of the decompression sickness (DCS) or venous gas emboli (VGE) outcomes of a proposed air break in oxygen prebreathe (PB) project, then decisions about the final experiment design must be made. We evaluated if the incidence of DCS and VGE from tests in altitude chambers over 20 years were different between men and women after resting and exercise PB protocols. Nitrogen washout during PB is our primary risk mitigation strategy to prevent subsequent DCS and VGE in subjects. Bubbles in the pulmonary artery (venous blood) were detected from the precordial position using Doppler ultrasound bubble detectors. The subjects were monitored for VGE for four min at about 15 min intervals for the duration of the altitude exposure, with maximum bubble grade assigned a Spencer Grade of IV

    Gender Consideration in Experiment Design for Airbrake in Prebreathe

    Get PDF
    If gender is a confounder of the decompression sickness (DCS) or venous gas emboli (VGE) outcomes of a proposed air break in oxygen prebreathe (PB) project, then decisions about the final experiment design must be made. We evaluated if the incidence of DCS and VGE from tests in altitude chambers over 20 years were different between men and women after resting and exercise prebreathe protocols. Nitrogen washout during PB is our primary risk mitigation strategy to prevent subsequent DCS and VGE in subjects. Bubbles in the pulmonary artery (venous blood) were detected from the precordial position using Doppler ultrasound bubble detectors. The subjects were monitored for VGE for four min at about 15 min intervals for the duration of the altitude exposure, with maximum bubble grade assigned a Spencer Grade of IV. There was no difference in DCS incidence between men and women in either PB protocol. The incidence of VGE and Grade IV VGE is statistically lower in women compared to men after resting PB. Even when 10 tests were compared with Mantel-Haenszel 2 where both men (n = 168) and women (n = 92) appeared, the p-value for VGE incidence was still significant at 0.03. The incidence of VGE and Grade IV VGE is not statistically lower in women compared to men after exercise PB. Even when six tests were compared with Mantel-Haenszel x2 where both men (n = 165) and women (n = 49) appeared, the p-value for VGE incidence was still not significant at 0.90. Our goal is to understand the risk of brief air breaks during PB without other confounding variables invalidating our conclusions. The cost to additionally account for the confounding role of gender on VGE outcome after resting PB is judged excessive. Our decision is to only evaluate air breaks in the exercise PB protocol. So there is no restriction to recruiting women as test subjects

    NEEMO 14: Evaluation of Human Performance for Rover, Cargo Lander, Crew Lander, and Exploration Tasks in Simulated Partial Gravity

    Get PDF
    The ultimate success of future human space exploration missions is dependent on the ability to perform extravehicular activity (EVA) tasks effectively, efficiently, and safely, whether those tasks represent a nominal mode of operation or a contingency capability. To optimize EVA systems for the best human performance, it is critical to study the effects of varying key factors such as suit center of gravity (CG), suit mass, and gravity level. During the 2-week NASA Extreme Environment Mission Operations (NEEMO) 14 mission, four crewmembers performed a series of EVA tasks under different simulated EVA suit configurations and used full-scale mockups of a Space Exploration Vehicle (SEV) rover and lander. NEEMO is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Quantitative and qualitative data collected during NEEMO 14, as well as from spacesuit tests in parabolic flight and with overhead suspension, are being used to directly inform ongoing hardware and operations concept development of the SEV, exploration EVA systems, and future EVA suits. OBJECTIVE: To compare human performance across different weight and CG configurations. METHODS: Four subjects were weighed out to simulate reduced gravity and wore either a specially designed rig to allow adjustment of CG or a PLSS mockup. Subjects completed tasks including level ambulation, incline/decline ambulation, standing from the kneeling and prone position, picking up objects, shoveling, ladder climbing, incapacitated crewmember handling, and small and large payload transfer. Subjective compensation, exertion, task acceptability, and duration data as well as photo and video were collected. RESULTS: There appear to be interactions between CG, weight, and task. CGs nearest the subject s natural CG are the most predictable in terms of acceptable performance across tasks. Future research should focus on understanding the interactions between CG, mass, and subject differences

    Life Sciences Implications of Lunar Surface Operations

    Get PDF
    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program

    Severe tissue damage and neurological deficit following extravasation of sodium hypochlorite solution during routine endodontic treatment.

    Get PDF
    Endodontic therapy is a routinely practised clinical procedure with few reported complications. Sodium hypochlorite is often used as an irrigant during this procedure, but severe complications may occur if this solution extravasates beyond the root apex. We present a case demonstrating some of the severe sequelae that can occur following the misuse of sodium hypochlorite during endodontic treatment of an upper lateral incisor, which also resulted in the previously unreported complication of isolated facial nerve weakness

    Biomedical Support of U.S. Extravehicular Activity

    Get PDF
    The world's first extravehicular activity (EVA) was performed by A. A. Leonov on March 18, 1965 during the Russian Voskhod-2 mission. The first US EVA was executed by Gemini IV astronaut Ed White on June 3, 1965, with an umbilical tether that included communications and an oxygen supply. A hand-held maneuvering unit (HHMU) also was used to test maneuverability during the brief EVA; however the somewhat stiff umbilical limited controlled movement. That constraint, plus difficulty returning through the vehicle hatch, highlighted the need for increased thermal control and improved EVA ergonomics. Clearly, requirements for a useful EVA were interrelated with the vehicle design. The early Gemini EVAs generated requirements for suits providing micro-meteor protection, adequate visual field and eye protection from solar visual and infrared radiation, gloves optimized for dexterity while pressurized, and thermal systems capable of protecting the astronaut while rejecting metabolic heat during high workloads. Subsequent Gemini EVAs built upon this early experience and included development of a portable environmental control and life support systems (ECLSS) and an astronaut maneuvering unit. The ECLSS provided a pressure vessel and controller with functional control over suit pressure, oxygen flow, carbon dioxide removal, humidity, and temperature control. Gemini EVA experience also identified the usefulness of underwater neutral buoyancy and altitude chamber task training, and the importance of developing reliable task timelines. Improved thermal management and carbon dioxide control also were required for high workload tasks. With the Apollo project, EVA activity was primarily on the lunar surface; and suit durability, integrated liquid cooling garments, and low suit operating pressures (3.75 pounds per square inch absolute [psia] or 25.8 kilopascal [kPa],) were required to facilitate longer EVAs with ambulation and significant physical workloads with average metabolic rates of 1000 BTU/hr and peaks of up to 2200 BTU/hr. Mobility was further augmented with the Lunar Roving Vehicle. The Apollo extravehicular mobility unit (EMU) was made up of over 15 components, ranging from a biomedical belt for capturing and transmitting biomedical data, urine and fecal containment systems, a liquid cooling garment, communications cap, a modular portable life support system (PLSS), a boot system, thermal overgloves, and a bubble helmet with eye protection. Apollo lunar astronauts performed successful EVAs on the lunar surface from a 5 psia (34.4 kPa) 100% oxygen environment in the Lunar Lander. A maximum of three EVAs were performed on any mission. For Skylab a modified A7LB suit, used for Apollo 15, was selected. The Skylab astronaut life support assembly (ALSA) provided umbilical support through the life support umbilical (LSU) and used open loop oxygen flow, rather than closed-loop as in Apollo missions. Thermal control was provided by liquid water circulated by spacecraft pumps and electrical power also was provided from the spacecraft via the umbilical. The cabin atmosphere of 5 psia (34.4 kPa), 70% oxygen, provided a normoxic atmosphere and because of the very low nitrogen partial pressures, no special protocols were required to protect against decompression sickness (DCS) as was the case with the Apollo spacecraft with a 5 psi, 100% oxygen environment

    Development of a Ground Test and Analysis Protocol for NASA's NextSTEP Phase 2 Habitation Concepts

    Get PDF
    The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low-Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts (SMEs) have been tasked with developing the ground-test protocol that will serve as the primary means by which these Phase 2 prototypes will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the Phase 2 Habitation Concepts is to consistently evaluate different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3. This paper describes the process by which the ground test protocol was developed and the objectives, methods, and metrics by which the NextSTEP Phase 2 Habitation Concepts will be rigorously and systematically evaluated. The protocol has been developed using both a top-down and bottom-up approach. Top-down development began with the Human Exploration and Operations Mission Directorate (HEOMD) exploration objectives and ISS Exploration Capability Study Team (IECST) candidate flight objectives. Strategic questions and associated rationales, derived from these candidate architectural objectives, provide the framework by which the ground-test protocol will address the DSG stack elements and configurations, systems and subsystems, and habitation, science, and EVA functions. From these strategic questions, high-level functional requirements for the DSG were drafted and associated ground-test objectives and analysis protocols were established. Bottom-up development incorporated objectives from NASA SMEs in autonomy, avionics and software, communication, environmental control and life support systems, exercise, extravehicular activity, exploration medical operations, guidance navigation and control, human factors and behavioral performance, human factors and habitability, logistics, Mission Control Center operations, power, radiation, robotics, safety and mission assurance, science, simulation, structures, thermal, trash management, and vehicle health. Top-down and bottom-up objectives were integrated to form overall functional requirements - ground-test objectives and analysis mapping. From this mapping, ground-test objectives were organized into those that will be evaluated through inspection, demonstration, analysis, subsystem standalone testing, and human-in-the-loop (HITL) testing. For the HITL tests, mission-like timelines, procedures, and flight rules have been developed to directly meet ground test objectives and evaluate specific functional requirements. Data collected from these assessments will be analyzed to determine the acceptability of habitation element configurations and the combinations of capabilities that will result in the best habitation platform to be recommended by the test team for Phase 3

    Lessons Learned from Performance Testing of Humans in Spacesuits in Simulated Reduced Gravity

    Get PDF
    Introduction: The overarching objective of the Integrated Suit Test (IST) series is to evaluate suited human performance using reduced-gravity analogs and learn what aspects of an EVA suit system affect human performance. For this objective to be successfully achieved, the testing methodology should be valid and reproducible, and the partial-gravity simulations must be as accurate and realistic as possible. Objectives: To highlight some of the key lessons learned about partial-gravity analogs and testing methodology, and to suggest considerations for optimizing the effectiveness and quality of results of future tests. Methods: Performance testing of suited and unsuited subjects was undertaken in different reduced-gravity analogs including the Space Vehicle Mockup Facility s Partial Gravity Simulator (POGO), parabolic flight on the C-9 aircraft, underwater environments including NASA s Extreme Environment Mission Operations (NEEMO) and the Neutral Buoyancy Lab (NBL), and in field analogs including Desert Research and Technology Studies (RATS), the Haughton Mars Project (HMP), and the JSC Rock Pile. Subjects performed level walking, incline/decline walking, running, shoveling, picking up and transferring rocks, kneeling/standing, and task boards. Lessons Learned Analogs: No single analog will properly simulate all aspects of the true partial-gravity environment. The POGO is an ideal environment from the standpoint that there are no time limits or significant volumetric constraints, but it does have several limitations. It allows only 2 translational degrees of freedom (DOF) and applies true partial-gravity offload only through the subject s center of gravity (CG). Also, when a subject is doing non-stationary tasks, significant overhead inertia from the lift column seems to have a negative impact on performance. Parabolic flight allows full translational and rotational DOF and applies offload to all parts of the body, but the simulation lasts less than 30 seconds. When this is coupled with the volumetric constraints of the plane, both task selection and data collection options are significantly limited. The underwater environments also allow all 6 DOF and allow off-loading to be applied throughout the body, but the data collection capabilities are limited to little more than subjective ratings. In addition, water drag negatively affects performance of tasks requiring dynamic motion. Field analogs provide the ability to simulate lunar terrain and more realistic mission-like objectives, but all of them operate at 1-g, so suited human performance testing generally must utilize a reduced-mass or "mockup" suit, depending on study objectives. In general, the ground-based overhead-suspension partial-gravity analogs like POGO allow the most diverse data collection methods possible while still simulating partial gravity. However, as currently designed, the POGO has significant limitations. Design of the Active Response Gravity Offload System (ARGOS) has begun and is focusing on adding full x,y,z translational DOF, improved offload accuracy, increased lift capacity, and active control of the x and y axes to minimize offload system inertia. Additionally, a new gimbal is being designed to reduce mass and inertia and to be able to work with different suits, as the current gimbal only supports suited testing with the Mark III Technology Demonstrator Suit (MKIII)
    corecore