1,407 research outputs found

    Critical Behavior of the Ferromagnetic Ising Model on a Sierpinski Carpet: Monte Carlo Renormalization Group Study

    Full text link
    We perform a Monte Carlo Renormalization Group analysis of the critical behavior of the ferromagnetic Ising model on a Sierpi\'nski fractal with Hausdorff dimension df1.8928d_f\simeq 1.8928. This method is shown to be relevant to the calculation of the critical temperature TcT_c and the magnetic eigen-exponent yhy_h on such structures. On the other hand, scaling corrections hinder the calculation of the temperature eigen-exponent yty_t. At last, the results are shown to be consistent with a finite size scaling analysis.Comment: 16 pages, 7 figure

    Towards a dephasing diode: asymmetric and geometric dephasing

    Get PDF
    We study the effect of a noisy environment on spin and charge transport in ballistic quantum wires with spin-orbit coupling (Rashba coupling). We find that the wire then acts as a ``dephasing diode'', inducing very different dephasing of the spins of right and left movers. We also show how Berry phase (geometric phase) in a curved wire can induce such asymmetric dephasing, in addition to purely geometric dephasing. We propose ways to measure these effects through spin detectors, spin-echo techniques, and Aharanov-Bohm interferometry.Comment: 4 pages (2 fig) v2: extensive improvements to "readability" & references adde

    Scaling law of Wolff cluster surface energy

    Full text link
    We study the scaling properties of the clusters grown by the Wolff algorithm on seven different Sierpinski-type fractals of Hausdorff dimension 1<df31 < d_f \le 3 in the framework of the Ising model. The mean absolute value of the surface energy of Wolff cluster follows a power law with respect to the lattice size. Moreover, we investigate the probability density distribution of the surface energy of Wolff cluster and are able to establish a new scaling relation. It enables us to introduce a new exponent associated to the surface energy of Wolff cluster. Finally, this new exponent is linked to a dynamical exponent via an inequality.Comment: 12 pages, 3 figures. To appear in PR

    Critical behavior of the 3-state Potts model on Sierpinski carpet

    Full text link
    We study the critical behavior of the 3-state Potts model, where the spins are located at the centers of the occupied squares of the deterministic Sierpinski carpet. A finite-size scaling analysis is performed from Monte Carlo simulations, for a Hausdorff dimension dfd_{f} 1.8928\simeq 1.8928. The phase transition is shown to be a second order one. The maxima of the susceptibility of the order parameter follow a power law in a very reliable way, which enables us to calculate the ratio of the exponents γ/ν\gamma /\nu. We find that the scaling corrections affect the behavior of most of the thermodynamical quantities. However, the sequence of intersection points extracted from the Binder's cumulant provides bounds for the critical temperature. We are able to give the bounds for the exponent 1/ν1/\nu as well as for the ratio of the exponents β/ν\beta/\nu, which are compatible with the results calculated from the hyperscaling relation.Comment: 13 pages, 4 figure

    Metric characterization of cluster dynamics on the Sierpinski gasket

    Full text link
    We develop and implement an algorithm for the quantitative characterization of cluster dynamics occurring on cellular automata defined on an arbitrary structure. As a prototype for such systems we focus on the Ising model on a finite Sierpsinski Gasket, which is known to possess a complex thermodynamic behavior. Our algorithm requires the projection of evolving configurations into an appropriate partition space, where an information-based metrics (Rohlin distance) can be naturally defined and worked out in order to detect the changing and the stable components of clusters. The analysis highlights the existence of different temperature regimes according to the size and the rate of change of clusters. Such regimes are, in turn, related to the correlation length and the emerging "critical" fluctuations, in agreement with previous thermodynamic analysis, hence providing a non-trivial geometric description of the peculiar critical-like behavior exhibited by the system. Moreover, at high temperatures, we highlight the existence of different time scales controlling the evolution towards chaos.Comment: 20 pages, 8 figure

    Incoherent scatterer in a Luttinger liquid: a new paradigmatic limit

    Full text link
    We address the problem of a Luttinger liquid with a scatterer that allows for both coherent and incoherent scattering channels. The asymptotic behavior at zero temperature is governed by a new stable fixed point: a Goldstone mode dominates the low energy dynamics, leading to a universal behavior. This limit is marked by equal probabilities for forward and backward scattering. Notwithstanding this non-trivial scattering pattern, we find that the shot noise as well as zero cross-current correlations vanish. We thus present a paradigmatic picture of an impurity in the Luttinger model, alternative to the Kane-Fisher picture.Comment: published version, 4 + epsilon pages, 1 figur

    Spontaneous magnetization of the Ising model on the Sierpinski carpet fractal, a rigorous result

    Full text link
    We give a rigorous proof of the existence of spontaneous magnetization at finite temperature for the Ising spin model defined on the Sierpinski carpet fractal. The theorem is inspired by the classical Peierls argument for the two dimensional lattice. Therefore, this exact result proves the existence of spontaneous magnetization for the Ising model in low dimensional structures, i.e. structures with dimension smaller than 2.Comment: 14 pages, 8 figure

    Entanglement entropy and quantum phase transitions in quantum dots coupled to Luttinger liquid wires

    Full text link
    We study a quantum phase transition which occurs in a system composed of two impurities (or quantum dots) each coupled to a different interacting (Luttinger-liquid) lead. While the impurities are coupled electrostatically, there is no tunneling between them. Using a mapping of this system onto a Kondo model, we show analytically that the system undergoes a Berezinskii-Kosterlitz-Thouless quantum phase transition as function of the Luttinger liquid parameter in the leads and the dot-lead interaction. The phase with low values of the Luttinger-liquid parameter is characterized by an abrupt switch of the population between the impurities as function of a common applied gate voltage. However, this behavior is hard to verify numerically since one would have to study extremely long systems. Interestingly though, at the transition the entanglement entropy drops from a finite value of ln(2)\ln(2) to zero. The drop becomes sharp for infinite systems. One can employ finite size scaling to extrapolate the transition point and the behavior in its vicinity from the behavior of the entanglement entropy in moderate size samples. We employ the density matrix renormalization group numerical procedure to calculate the entanglement entropy of systems with lead lengths of up to 480 sites. Using finite size scaling we extract the transition value and show it to be in good agreement with the analytical prediction.Comment: 12 pages, 9 figure

    Conductance of Aharonov--Bohm Rings: From the Discrete to the Continuous Spectrum Limit

    Full text link
    The dissipative conductance of an array of mesoscopic rings, subject to an a.c. magnetic flux is investigated. The magneto--conductance may change sign between canonical and grand-canonical statistical ensembles, as function of the inelastic level broadening and as function of the temperature. Differences between canonical and grand-canonical ensembles persist up to temperature of the order of the Thouless energy.Comment: 13 pages, 2 figures, REVTeX v2.1, WIS--93/121/Dec.--P

    Universal Conductance Distribution in the Quantum Size Regime

    Full text link
    We study the conductance (g) distribution function of an ensemble of isolated conducting rings, with an Aharonov--Bohm flux. This is done in the discrete spectrum limit, i.e., when the inelastic rate, frequency and temperature are all smaller than the mean level spacing. Over a wide range of g the distribution function exhibits universal behavior P(g)\sim g^{-(4+\beta)/3}, where \beta=1 (2) for systems with (without) a time reversal symmetry. The nonuniversal large g tail of this distribution determines the values of high moments.Comment: 13 pages+1 figure, RevTEX
    corecore