383 research outputs found

    Vortex shedding from tapered, triangular plates: taper and aspect ratio effects

    No full text
    Further experiments on features of the vortex shedding from tapered flat plates normal to an airstream are described. The work extends that of Castro and Rogers (2002) and concentrates on the study of the effects of varying the spanwise aspect ratio for a fixed shape plate, by appropriate adjustment of end-plates, and of the nature of the shedding as the degree of taper becomes very large, so that the body is more like a triangular plate—e.g. an isosceles triangle—than a slightly tapered plate. With the taper ratio TR defined as the ratio of plate length to average cross-stream width, the paper concentrates on the range 0.58<TR<60. Reynolds numbers, based on the average plate width, exceed 104. It is confirmed that for a small enough taper ratio the geometrical three-dimensionality is sufficiently strong that all signs of periodic vortex shedding cease. For all other cases, however, the flow at different locations along the span can vary substantially, depending on taper. There appear to be at least four different regimes, each appropriate for a different range of taper ratio. These various regimes are described

    Growth mechanisms of perturbations in boundary layers over a compliant wall

    Full text link
    The temporal modal and nonmodal growth of three-dimensional perturbations in the boundary-layer flow over an infinite compliant flat wall is considered. Using a wall-normal velocity/wall-normal vorticity formalism, the dynamic boundary condition at the compliant wall admits a linear dependence on the eigenvalue parameter, as compared to a quadratic one in the canonical formulation of the problem. This greatly simplifies the accurate calculation of the continuous spectrum by means of a spectral method, thereby yielding a very effective filtering of the pseudospectra as well as a clear identification of instability regions. The regime of global instability is found to be matching the regime of the favorable phase of the forcing by the flow on the compliant wall so as to enhance the amplitude of the wall. An energy-budget analysis for the least-decaying hydroelastic (static-divergence, traveling-wave-flutter and near-stationary transitional) and Tollmien--Schlichting modes in the parameter space reveals the primary routes of energy flow. Moreover, the flow exhibits a slower transient growth for the maximum growth rate of a superposition of streamwise-independent modes due to a complex dependence of the wall-boundary condition with the Reynolds number. The initial and optimal perturbations are compared with the boundary-layer flow over a solid wall; differences and similarities are discussed. Unlike the solid-wall case, viscosity plays a pivotal role in the transient growth. A slowdown of the maximum growth rate with the Reynolds number is uncovered and found to originate in the transition of the fluid-solid interaction from a two-way to a one-way coupling. Finally, a term-by-term energy budget analysis is performed to identify the key contributors to the transient growth mechanism

    Insulin Resistance Is Not Conserved in Myotubes Established from Women with PCOS

    Get PDF
    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among premenopausal women, who often develop insulin resistance. We tested the hypothesis that insulin resistance in skeletal muscle of patients with polycystic ovary syndrome (PCOS) is an intrinsic defect, by investigating the metabolic characteristics and gene expression of in vitro differentiated myotubes established from well characterized PCOS subjects.Using radiotracer techniques, RT-PCR and enzyme kinetic analysis we examined myotubes established from PCOS subjects with or without pioglitazone treatment, versus healthy control subjects who had been extensively metabolically characterized in vivo. Results. Myotubes established from PCOS and matched control subjects comprehensively expressed all insulin-sensitive biomarkers; glucose uptake and oxidation, glycogen synthesis and lipid uptake. There were no significant differences between groups either at baseline or during acute insulin stimulation, although in vivo skeletal muscle was insulin resistant. In particular, we found no evidence for defects in insulin-stimulated glycogen synthase activity between groups. Myotubes established from PCOS patients with or without pioglitazone treatment also showed no significant differences between groups, neither at baseline nor during acute insulin stimulation, although in vivo pioglitazone treatment significantly improved insulin sensitivity. Consistently, the myotube cultures failed to show differences in mRNA levels of genes previously demonstrated to differ in PCOS patients with or without pioglitazone treatment (PLEK, SLC22A16, and TTBK).These results suggest that the mechanisms governing insulin resistance in skeletal muscle of PCOS patients in vivo are not primary, but rather adaptive.ClinicalTrials.gov NCT00145340

    Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells

    Get PDF
    AIMS/HYPOTHESIS: Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells. METHODS: Real-time RT-PCR analysis, 2-deoxy-D: -glucose (2-DG) uptake and western blot analysis were carried out in rat and human muscle cell lines. RESULTS: In both rat and human myotubes, glucosamine treatment caused a significant increase in the expression of the ER stress markers immunoglobulin heavy chain-binding protein/glucose-regulated protein 78 kDa (BIP/GRP78 [also known as HSPA5]), X-box binding protein-1 (XBP1) and activating transcription factor 6 (ATF6). In addition, glucosamine impaired insulin-stimulated 2-DG uptake in both rat and human myotubes. Interestingly, pretreatment of both rat and human myotubes with the chemical chaperones 4-phenylbutyric acid (PBA) or tauroursodeoxycholic acid (TUDCA), completely prevented the effect of glucosamine on both ER stress induction and insulin-induced glucose uptake. In both rat and human myotubes, glucosamine treatment reduced mRNA and protein levels of the gene encoding GLUT4 and mRNA levels of the main regulators of the gene encoding GLUT4 (myocyte enhancer factor 2 a [MEF2A] and peroxisome proliferator-activated receptor-gamma coactivator 1alpha [PGC1alpha]). Again, PBA or TUDCA pretreatment prevented glucosamine-induced inhibition of GLUT4 (also known as SLC2A4), MEF2A and PGC1alpha (also known as PPARGC1A). Finally, we showed that overproduction of ATF6 is sufficient to inhibit the expression of genes GLUT4, MEF2A and PGC1alpha and that ATF6 silencing with a specific small interfering RNA is sufficient to completely prevent glucosamine-induced inhibition of GLUT4, MEF2A and PGC1alpha in skeletal muscle cells. CONCLUSIONS/INTERPRETATION: In this work we show that glucosamine-induced ER stress causes insulin resistance in both human and rat myotubes and impairs GLUT4 production and insulin-induced glucose uptake via an ATF6-dependent decrease of the GLUT4 regulators MEF2A and PGC1alpha

    Spatial Stability of Incompressible Attachment-Line Flow

    Get PDF
    Linear stability analysis of incompressible attachment-line flow is presented within the spatial framework. The system of perturbation equations is solved using spectral collocation. This system has been solved in the past using the temporal approach and the current results are shown to be in excellent agreement with neutral temporal calculations. Results amenable to direct comparison with experiments are then presented for the case of zero suction. The global solution method utilized for solving the eigenproblem yields, aside from the well-understood primary mode, the full spectrum of least-damped waves. Of those, a new mode, well separated from the continuous spectrum is singled out and discussed. Further, relaxation of the condition of decaying perturbations in the far-field results in the appearance of sinusoidal modes akin to those found in the classical Orr-Sommerfeld problem. Finally, the continuous spectrum is demonstrated to be amenable to asymptotic analysis. Expressions are derived for the location, in parameter space, of the continuous spectrum, as well as for the limiting cases of practical interest. In the large Reynolds number limit the continuous spectrum is demonstrated to be identical to that of the Orr-Sommerfeld equation

    Impaired Cell Surface Expression of HLA-B Antigens on Mesenchymal Stem Cells and Muscle Cell Progenitors

    Get PDF
    HLA class-I expression is weak in embryonic stem cells but increases rapidly during lineage progression. It is unknown whether all three classical HLA class-I antigens follow the same developmental program. In the present study, we investigated allele-specific expression of HLA-A, -B, and -C at the mRNA and protein levels on human mesenchymal stem cells from bone marrow and adipose tissue as well as striated muscle satellite cells and lymphocytes. Using multicolour flow cytometry, we found high cell surface expression of HLA-A on all stem cells and PBMC examined. Surprisingly, HLA-B was either undetectable or very weakly expressed on all stem cells protecting them from complement-dependent cytotoxicity (CDC) using relevant human anti-B and anti-Cw sera. IFNγ stimulation for 48–72 h was required to induce full HLA–B protein expression. Quantitative real-time RT-PCR showed that IFNγ induced a 9–42 fold increase of all six HLA-A,-B,-C gene transcripts. Interestingly, prior to stimulation, gene transcripts for all but two alleles were present in similar amounts suggesting that post-transcriptional mechanisms regulate the constitutive expression of HLA-A,-B, and -C. Locus-restricted expression of HLA-A, -B and -C challenges our current understanding of the function of these molecules as regulators of CD8+ T-cell and NK-cell function and should lead to further inquiries into their expression on other cell types

    Three dimensional intravascular ultrasonic assessment of the local mechanism of restenosis after balloon angioplasty

    Get PDF
    OBJECTIVE: To assess the mechanism of restenosis after balloon angioplasty. DESIGN: Prospective study. PATIENTS: 13 patients treated with balloon angioplasty. INTERVENTIONS: 111 coronary subsegments (2 mm each) were analysed after balloon angioplasty and at a six month follow up using three dimensional intravascular ultrasound (IVUS). MAIN OUTCOME MEASURES: Qualitative and quantitative IVUS analysis. Total vessel (external elastic membrane), plaque, and lumen volume were measured in each 2 mm subsegment. Delta values were calculated (follow up - postprocedure). Remodelling was defined as any (positive or negative) change in total vessel volume. RESULTS: Positive remodelling was observed in 52 subsegments while negative remodelling occurred in 44. Remodelling, plaque type, and dissection were heterogeneously distributed along the coronary segments. Plaque composition was not associated with changes in IVUS indices, whereas dissected subsegments had a greater increase in total vessel volume than those without dissection (1.7 mm(3) v -0.33 mm(3), p = 0.04). Change in total vessel volume was correlated with changes in lumen (p < 0.05, r = 0.56) and plaque volumes (p < 0.05, r = 0.64). The site with maximum lumen loss was not the same site as the minimum lumen area at follow up in the majority (n = 10) of the vessels. In the multivariate model, residual plaque burden had an influence on negative remodelling (p = 0.001, 95% confidence interval (CI) -0.391 to -0.108), whereas dissection had an effect on total vessel increase (p = 0.002, 95% CI 1.168 to 4.969). CONCLUSIONS: The mechanism of lumen renarrowing after balloon angioplasty appears to be determined by unfavourable remodelling. However, different patterns of remodelling may occur in individual injured coronary segments, which highlights the complexity and influence of local factors in the restenotic process

    Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble

    No full text
    The need for better understanding of the low-frequency unsteadiness observed in shock wave/turbulent boundary layer interactions has been driving research in this area for several decades. We present here a large-eddy simulation investigation of the interaction between an impinging oblique shock and a Mach 2.3 turbulent boundary layer. Contrary to past large-eddy simulation investigations on shock/turbulent boundary layer interactions, we have used an inflow technique which does not introduce any energetically significant low frequencies into the domain, hence avoiding possible interference with the shock/boundary layer interaction system. The large-eddy simulation has been run for much longer times than previous computational studies making a Fourier analysis of the low frequency possible. The broadband and energetic low-frequency component found in the interaction is in excellent agreement with the experimental findings. Furthermore, a linear stability analysis of the mean flow was performed and a stationary unstable global mode was found. The long-run large-eddy simulation data were analyzed and a phase change in the wall pressure fluctuations was related to the global-mode structure, leading to a possible driving mechanism for the observed low-frequency motions
    corecore