13 research outputs found

    Dimebon Does Not Ameliorate Pathological Changes Caused by Expression of Truncated (1–120) Human Alpha-Synuclein in Dopaminergic Neurons of Transgenic Mice

    Get PDF
    Background: Recent clinical studies have demonstrated that dimebon, a drug originally designed and used as a non-selective antihistamine, ameliorates symptoms and delays progress of mild to moderate forms of Alzheimer’s and Huntington’s diseases. Although the mechanism of dimebon action on pathological processes in degenerating brain is elusive, results of studies carried out in cell cultures and animal models suggested that this drug might affect the process of pathological accumulation and aggregation of various proteins involved in the pathogenesis of proteinopathies. However, the effect of this drug on the pathology caused by overexpression and aggregation of alpha-synuclein, including Parkinson’s disease (PD), has not been assessed. Objective: To test if dimebon affected alpha-synuclein-induced pathology using a transgenic animal model. Methods: We studied the effects of chronic dimebon treatment on transgenic mice expressing the C-terminally truncated (1–120) form of human alpha-synuclein in dopaminergic neurons, a mouse model that recapitulates several biochemical, histopathological and behavioral characteristics of the early stage of PD. Results: Dimebon did not improve balance and coordination of aging transgenic animals or increase the level of striatal dopamine, nor did it prevent accumulation of alpha-synuclein in cell bodies of dopaminergic neurons. Conclusion: Our observations suggest that in the studied model of alpha-synucleinopathy dimebon has very limited effect on certain pathological alterations typical of PD and related diseases

    Progressive Neurodegeneration or Endogenous Compensation in an Animal Model of Parkinson's Disease Produced by Decreasing Doses of Alpha-Synuclein

    Get PDF
    The pathological hallmarks of Parkinson's disease (PD) are degeneration of dopamine (DA) neurons of the substantia nigra (SN) and the presence of alpha-synuclein (α-syn)-rich Lewy bodies in DA cells that remain. To model these aspects of the disease, we previously showed that high titer (5.1×10exp12 gp/ml) AAV1/2 driven expression of A53T α-syn in the SN of rats caused nigrostriatal pathology including a loss of DA neurons, but also with toxicity in the GFP control group. In the current study, we evaluate the effects of two lower titers by dilution of the vector (1∶3 [1.7×10exp12] and 1∶10 [5.1×10exp11]) to define a concentration that produced pathology specific for α-syn. In GFP and empty vector groups there were no behavioural or post-mortem changes at 3 or 6 weeks post-administration at either vector dose. Dilution of the AAV1/2 A53T α-syn (1∶3) produced significant paw use asymmetry, reductions in striatal tyrosine hydroxylase (TH), and increases in DA turnover at 3 weeks in the absence of overt pathology. By 6 weeks greater evidence of pathology was observed and included, reductions in SN DA neurons, striatal DA, TH and DA-transporter, along with a sustained behavioural deficit. In contrast, the 1∶10 AAV1/2 A53T α-syn treated animals showed normalization between 3 and 6 weeks in paw use asymmetry, reductions in striatal TH, and increased DA turnover. Progression of dopaminergic deficits using the 1∶3 titer of AAV1/2 A53Tα-syn provides a platform for evaluating treatments directed at preventing and/or reversing synucleinopathy. Use of the 1∶10 titer of AAV1/2 A53T α-syn provides an opportunity to study mechanisms of endogenous compensation. Furthermore, these data highlight the need to characterize the titer of vector being utilized, when using AAV to express pathogenic proteins and model disease process, to avoid producing non-specific effects

    Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for Lewy body disorders.

    Get PDF
    Dysfunction of the 140 aa protein alpha-synuclein plays a central role in Lewy body disorders, including Parkinson's disease, as well as in multiple system atrophy. Here, we show that the expression of truncated human alpha-synuclein(1-120), driven by the rat tyrosine hydroxylase promoter on a mouse alpha-synuclein null background, leads to the formation of pathological inclusions in the substantia nigra and olfactory bulb and to a reduction in striatal dopamine levels. At the behavioral level, the transgenic mice showed a progressive reduction in spontaneous locomotion and an increased response to amphetamine. These findings suggest that the C-terminal of alpha-synuclein is an important regulator of aggregation in vivo and will help to understand the mechanisms underlying the pathogenesis of Lewy body disorders and multiple system atrophy

    Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for Lewy body disorders.

    Get PDF
    Dysfunction of the 140 aa protein alpha-synuclein plays a central role in Lewy body disorders, including Parkinson's disease, as well as in multiple system atrophy. Here, we show that the expression of truncated human alpha-synuclein(1-120), driven by the rat tyrosine hydroxylase promoter on a mouse alpha-synuclein null background, leads to the formation of pathological inclusions in the substantia nigra and olfactory bulb and to a reduction in striatal dopamine levels. At the behavioral level, the transgenic mice showed a progressive reduction in spontaneous locomotion and an increased response to amphetamine. These findings suggest that the C-terminal of alpha-synuclein is an important regulator of aggregation in vivo and will help to understand the mechanisms underlying the pathogenesis of Lewy body disorders and multiple system atrophy

    SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease

    No full text
    The pre-synaptic protein α-synuclein is the main component of Lewy bodies and Lewy neurites, the defining neuropathological characteristics of Parkinson's disease and dementia with Lewy bodies. Mutations in the α-synuclein gene cause familial forms of Parkinson's disease and dementia with Lewy bodies. We previously described a transgenic mouse line expressing truncated human α-synuclein(1-120) that develops α-synuclein aggregates, striatal dopamine deficiency and reduced locomotion, similar to Parkinson's disease. We now show that in the striatum of these mice, as in Parkinson's disease, synaptic accumulation of α-synuclein is accompanied by an age-dependent redistribution of the synaptic SNARE proteins SNAP-25, syntaxin-1 and synaptobrevin-2, as well as by an age-dependent reduction in dopamine release. Furthermore, the release of FM1-43 dye from PC12 cells expressing either human full-length α-synuclein(1-140) or truncated α-synuclein(1-120) was reduced. These findings reveal a novel gain of toxic function of α-synuclein at the synapse, which may be an early event in the pathogenesis of Parkinson's disease. © 2010 The Author(s)

    SNARE protein redistribution and synaptic failure in a transgenic mouse model of Parkinson's disease.

    No full text
    The pre-synaptic protein alpha-synuclein is the main component of Lewy bodies and Lewy neurites, the defining neuropathological characteristics of Parkinson’s disease and dementia with Lewy bodies. Mutations in the alpha-synuclein gene cause familial forms of Parkinson’s disease and dementia with Lewy bodies. We previously described a transgenic mouse line expressing truncated human alpha-synuclein(1-120) that develops alpha-synuclein aggregates, striatal dopamine deficiency and reduced locomotion, similar to Parkinson’s disease. We now show that in the striatum of these mice, as in Parkinson’s disease, synaptic accumulation of alpha-synuclein is accompanied by an age-dependent redistribution of the synaptic SNARE proteins SNAP-25, syntaxin-1 and synaptobrevin-2, as well as by an age-dependent reduction in dopamine release. Furthermore, the release of FM1-43 dye from PC12 cells expressing either human full-length alpha-synuclein(1–140) or truncated alpha-synuclein(1-120) was reduced. These findings reveal a novel gain of toxic function of alpha-synuclein at the synapse, which may be an early event in the pathogenesis of Parkinson’s disease
    corecore