97,651 research outputs found

    Nevada K-12 STEM Pipeline

    Full text link

    Insight into tube-building behaviour and palaeoecology of some agglutinating worms from the Upper Devonian of Nevada, USA

    Get PDF
    Agglutinated worm tubes from the Upper Devonian of the Devils Gate section in Nevada, USA are reported for the first time, filling a major gap in their Palaeozoic fossil record. Two small (5 mm and 6.7 mm in length) tubes are composed entirely of tentaculitid shells, and one large tube (55 mm in length) is formed from particles including ostracode carapaces, echinoderm ossicles, tentaculitid shells and putative bryozoan fragments aligned perpendicularly to the tube’s long axis. The tubes, in particular the large one have a cylindrical, curved and tapering tube morphology that is very similar to that of modern agglutinating polychaetes of the families Terebellidae and Pectinariidae. The large tube is dominated by objects that fall within a certain size-range, and although built from different types of particles, echinoderm ossicles are prevalent in the posterior part, whereas ostracode carapaces dominate in the middle and anterior parts of the tube. Tentaculitid shells are relatively rare in the large tube, despite being abundant in the surrounding host deposit. The faunal assemblage composing the tube suggests that the worm animal was rather specific in its selection of particles with a certain morphology. This is common behaviour amongst many modern agglutinating terebellid and pectinariid polychaetes. The preservation of such fragile tubes was enhanced by rapid burial, likely caused by gravity flow of sediment in a deep-slope setting

    Intake Ground Vortex Prediction Methods

    Get PDF
    For an aircraft turbofan engine in ground operations or during the take-off run a ground vortex can occur which is ingested and could potentially adversely affect the engine performance and operation. The vortex characteristics depend on the ground clearance, intake flow capture ratio and the relative wind vector. It is a complex flow for which there is currently very little appropriate quantitative preliminary design information. These aspects are addressed in this work where a range of models are developed to provide a method for estimating the key metrics such as the formation boundary and the ground vortex size and strength. Three techniques are presented which utilize empirical, analytical and semi-empirical approaches. The empirical methods are primarily based on a large dataset of model-scale experiments which quantitatively measured the ground vortex characteristics for a wide range of configurations. These include the effects of intake ground clearance, approaching boundary layer thickness, intake Mach number and capture velocity ratio. Overall the models are able to predict some of the key measured behaviours such as the velocity ratio for maximum vortex strength. With increasing empiricism for key sub-elements of the model construction, an increasing level of agreement is found with the experimental results. Overall the three techniques provide a relatively quick and easy method in establishing the important vortex characteristics for a given headwind configuration which is of significant use from a practical engineering perspective

    Large igneous provinces and mass extinctions: an update

    Get PDF
    The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capitanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always sufficient recovery time between individual eruptions to negate any cumulative effect of successive flood basalt eruptions. Instead, the environmental and climatic damage must be attributed to single-pulse gas effusions. It is notable that the best-constrained examples of death-by-volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO 2 and SO 2 ) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinction scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO 2 emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality. Intriguingly, many voluminous large igneous province eruptions, especially those of the Cretaceous oceanic plateaus, are not associated with significant extinction losses. This suggests that the link between the two phenomena may be controlled by a range of factors, including continental configuration, the latitude, volume, rate, and duration of eruption, its style and setting (continental vs. oceanic), the preexisting climate state, and the resilience of the extant biota to change

    Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation

    Get PDF
    Lower Triassic marine strata in Spitsbergen accumulated on a mid-to-high latitude ramp in which high-energy foreshore and shoreface facies passed offshore into sheet sandstones of probable hyperpycnite origin. More distal facies include siltstones, shales and dolomitic limestones. Carbon isotope chemostratigraphy comparison allows improved age dating of the Boreal sections and shows a significant hiatus in the upper Spathian. Two major deepening events, in earliest Griesbachian and late Smithian time, are separated by shallowing-upwards trends that culminated in the Dienerian and Spathian substages. The redox record, revealed by changes in bioturbation, palaeoecology, pyrite framboid content and trace metal concentrations, shows anoxic phases alternating with intervals of better ventilation. Only Dienerian–early Smithian time witnessed persistent oxygenation that was sufficient to support a diverse benthic community. The most intensely anoxic, usually euxinic, conditions are best developed in offshore settings, but at times euxinia also developed in upper offshore settings where it is even recorded in hyperpycnite and storm-origin sandstone beds: an extraordinary facet of Spitsbergen's record. The euxinic phases do not track relative water depth changes. For example, the continuous shallowing upwards from the Griesbachian to lower Dienerian was witness to several euxinic phases separated by intervals of more oxic, bioturbated sediments. It is likely that the euxinia was controlled by climatic oscillations rather than intra-basinal factors. It remains to be seen if all the anoxic phases found in Spitsbergen are seen elsewhere, although the wide spread of anoxic facies in the Smithian/Spathian boundary interval is clearly a global event

    Diffusion coefficients for multi-step persistent random walks on lattices

    Full text link
    We calculate the diffusion coefficients of persistent random walks on lattices, where the direction of a walker at a given step depends on the memory of a certain number of previous steps. In particular, we describe a simple method which enables us to obtain explicit expressions for the diffusion coefficients of walks with two-step memory on different classes of one-, two- and higher-dimensional lattices.Comment: 27 pages, 2 figure

    The Impact of Contaminated RR Lyrae/Globular Cluster Photometry on the Distance Scale

    Full text link
    RR Lyrae variables and the stellar constituents of globular clusters are employed to establish the cosmic distance scale and age of the universe. However, photometry for RR Lyrae variables in the globular clusters M3, M15, M54, M92, NGC2419, and NGC6441 exhibit a dependence on the clustercentric distance. For example, variables and stars positioned near the crowded high-surface brightness cores of the clusters may suffer from photometric contamination, which invariably affects a suite of inferred parameters (e.g., distance, color excess, absolute magnitude, etc.). The impetus for this study is to mitigate the propagation of systematic uncertainties by increasing awareness of the pernicious impact of contaminated and radial-dependent photometry.Comment: To appear in ApJ

    Intake ground vortex characteristics

    Get PDF
    The development of ground vortices when an intake operates in close proximity to the ground has been studied computationally for several configurations including front and rear quarter approaching flows as well as tailwind arrangements. The investigations have been conducted at model scale using a generic intake geometry. Reynolds Averaged Navier–Stokes calculations have been used and an initial validation of the computational model has been carried out against experimental data. The computational method has subsequently been applied to configurations that are difficult to test experimentally by including tailwind and rear quarter flows. The results, along with those from a previous compatible study of headwind and pure cross-wind configurations, have been used to assess the ground vortex behaviour under a broad range of velocity ratios and approaching wind angles. The characteristics provide insights on the influence of the size and strength of ground vortices on the overall quality of the flow ingested by the intake

    Finite range Decomposition of Gaussian Processes

    Full text link
    Let \D be the finite difference Laplacian associated to the lattice \bZ^{d}. For dimension d≥3d\ge 3, a≥0a\ge 0 and LL a sufficiently large positive dyadic integer, we prove that the integral kernel of the resolvent G^{a}:=(a-\D)^{-1} can be decomposed as an infinite sum of positive semi-definite functions Vn V_{n} of finite range, Vn(x−y)=0 V_{n} (x-y) = 0 for ∣x−y∣≥O(L)n|x-y|\ge O(L)^{n}. Equivalently, the Gaussian process on the lattice with covariance GaG^{a} admits a decomposition into independent Gaussian processes with finite range covariances. For a=0a=0, Vn V_{n} has a limiting scaling form L−n(d−2)Γc,∗(x−yLn)L^{-n(d-2)}\Gamma_{c,\ast}{\bigl (\frac{x-y}{L^{n}}\bigr)} as n→∞n\to \infty. As a corollary, such decompositions also exist for fractional powers (-\D)^{-\alpha/2}, 0<α≤20<\alpha \leq 2. The results of this paper give an alternative to the block spin renormalization group on the lattice.Comment: 26 pages, LaTeX, paper in honour of G.Jona-Lasinio.Typos corrected, corrections in section 5 and appendix
    • …
    corecore