12,846 research outputs found
SU(N) Meander Determinants
We propose a generalization of meanders, i.e., configurations of
non-selfintersecting loops crossing a line through a given number of points, to
SU(N). This uses the reformulation of meanders as pairs of reduced elements of
the Temperley-Lieb algebra, a SU(2)-related quotient of the Hecke algebra, with
a natural generalization to SU(N). We also derive explicit formulas for SU(N)
meander determinants, defined as the Gram determinants of the corresponding
bases of the Hecke algebra.Comment: TeX using harvmac.tex and epsf.tex, 60 pages (l-mode), 5 figure
Combinatorial point for higher spin loop models
Integrable loop models associated with higher representations (spin k/2) of
U_q(sl(2)) are investigated at the point q=-e^{i\pi/(k+2)}. The ground state
eigenvalue and eigenvectors are described. Introducing inhomogeneities into the
models allows to derive a sum rule for the ground state entries.Comment: latest version adds some reference
Folding Transitions of the Square-Diagonal Lattice
We address the problem of "phantom" folding of the tethered membrane modelled
by the two-dimensional square lattice, with bonds on the edges and diagonals of
each face. Introducing bending rigidities and for respectively long
and short bonds, we derive the complete phase diagram of the model, using
transfer matrix calculations. The latter displays two transition curves, one
corresponding to a first order (ferromagnetic) folding transition, and the
other to a continuous (anti-ferromagnetic) unfolding transition.Comment: TeX using harvmac.tex and epsf.tex, 22 pages (l mode), 17 figure
Open boundary Quantum Knizhnik-Zamolodchikov equation and the weighted enumeration of Plane Partitions with symmetries
We propose new conjectures relating sum rules for the polynomial solution of
the qKZ equation with open (reflecting) boundaries as a function of the quantum
parameter and the -enumeration of Plane Partitions with specific
symmetries, with . We also find a conjectural relation \`a la
Razumov-Stroganov between the limit of the qKZ solution and refined
numbers of Totally Symmetric Self Complementary Plane Partitions.Comment: 27 pages, uses lanlmac, epsf and hyperbasics, minor revision
The solution of the quantum T-system for arbitrary boundary
We solve the quantum version of the -system by use of quantum
networks. The system is interpreted as a particular set of mutations of a
suitable (infinite-rank) quantum cluster algebra, and Laurent positivity
follows from our solution. As an application we re-derive the corresponding
quantum network solution to the quantum -system and generalize it to
the fully non-commutative case. We give the relation between the quantum
-system and the quantum lattice Liouville equation, which is the quantized
-system.Comment: 24 pages, 18 figure
Inhomogenous model of crossing loops and multidegrees of some algebraic varieties
We consider a quantum integrable inhomogeneous model based on the Brauer
algebra B(1) and discuss the properties of its ground state eigenvector. In
particular we derive various sum rules, and show how some of its entries are
related to multidegrees of algebraic varieties.Comment: revised v3: filled gap in proof of thm
Around the Razumov-Stroganov conjecture: proof of a multi-parameter sum rule
We prove that the sum of entries of the suitably normalized groundstate
vector of the O(1) loop model with periodic boundary conditions on a periodic
strip of size 2n is equal to the total number of n x n alternating sign
matrices. This is done by identifying the state sum of a multi-parameter
inhomogeneous version of the O(1) model with the partition function of the
inhomogeneous six-vertex model on a n x n square grid with domain wall boundary
conditions.Comment: 30 pages. v2: Eq. (3.38) corrected. v3: title changed, references
added. v4: q and q^{-1} switched to conform to standard convention
- …
