3,738 research outputs found

    Analysis of patterns formed by two-component diffusion limited aggregation

    Full text link
    We consider diffusion limited aggregation of particles of two different kinds. It is assumed that a particle of one kind may adhere only to another particle of the same kind. The particles aggregate on a linear substrate which consists of periodically or randomly placed particles of different kinds. We analyze the influence of initial patterns on the structure of growing clusters. It is shown that at small distances from the substrate, the cluster structures repeat initial patterns. However, starting from a critical distance the initial periodicity is abruptly lost, and the particle distribution tends to a random one. An approach describing the evolution of the number of branches is proposed. Our calculations show that the initial patter can be detected only at the distance which is not larger than approximately one and a half of the characteristic pattern size.Comment: Accepted for publication in Physical Review

    Radio emission from satellite-Jupiter interactions (especially Ganymede)

    Full text link
    Analyzing a database of 26 years of observations of Jupiter from the Nan\c{c}ay Decameter Array, we study the occurrence of Io-independent emissions as a function of the orbital phase of the other Galilean satellites and Amalthea. We identify unambiguously the emissions induced by Ganymede and characterize their intervals of occurrence in CML and Ganymede phase and longitude. We also find hints of emissions induced by Europa and, surprisingly, by Amalthea. The signature of Callisto-induced emissions is more tenuous.Comment: 14 pages, 7 figures, in "Planetary Radio Emissions VIII", G. Fischer, G. Mann, M. Panchenko and P. Zarka eds., Austrian Acad. Sci. Press, Vienna, in press, 201

    Jupiter radio emission induced by Ganymede and consequences for the radio detection of exoplanets

    Get PDF
    International audienceBy analysing a database of 26 yr of observations of Jupiter with the Nancay Decameter Array, we unambiguously identify the radio emissions caused by the Ganymede-Jupiter interaction. We study the energetics of these emissions via the distributions of their intensities, duration, and power, and compare them to the energetics of the Io-Jupiter radio emissions. This allows us to demonstrate that the average emitted radio power is proportional to the Poynting flux from the rotating Jupiter's magnetosphere intercepted by the obstacle. We then generalize this result to the radio-magnetic scaling law that appears to apply to all plasma interactions between a magnetized flow and an obstacle, magnetized or not. Extrapolating this scaling law to the parameter range corresponding to hot Jupiters, we predict large radio powers emitted by these objects, that should result in detectable radio flux with new-generation radiotelescopes. Comparing the distributions of the durations of Ganymede-Jupiter and Io-Jupiter emission events also suggests that while the latter results from quasi-permanent Alfven wave excitation by Io, the former likely results from sporadic reconnection between magnetic fields Ganymede and Jupiter, controlled by Jupiter's magnetic field geometry and modulated by its rotation
    corecore