853 research outputs found

    The twisted open string partition function and Yukawa couplings

    Get PDF
    We use the operator formalism to derive the bosonic contribution to the twisted open string partition function in toroidal compactifications. This amplitude describes, for instance, the planar interaction between g+1 magnetized or intersecting D-branes. We write the result both in the closed and in the open string channel in terms of Prym differentials on the appropriate Riemann surface. Then we focus on the g=2 case for a 2-torus. By factorizing the twisted partition function in the open string channel we obtain an explicit expression for the 3-twist field correlator, which is the main ingredient in the computation of Yukawa couplings in D-brane phenomenological models. This provides an alternative method for computing these couplings that does not rely on the stress-energy tensor technique.Comment: 32 pages, 5 figures, Latex; v2: typos correcte

    New twist field couplings from the partition function for multiply wrapped D-branes

    Full text link
    We consider toroidal compactifications of bosonic string theory with particular regard to the phases (cocycles) necessary for a consistent definition of the vertex operators, the boundary states and the T-duality rules. We use these ingredients to compute the planar multi-loop partition function describing the interaction among magnetized or intersecting D-branes, also in presence of open string moduli. It turns out that unitarity in the open string channel crucially depends on the presence of the cocycles. We then focus on the 2-loop case and study the degeneration limit where this partition function is directly related to the tree-level 3-point correlators between twist fields. These correlators represent the main ingredient in the computation of Yukawa couplings and other terms in the effective action for D-brane phenomenological models. By factorizing the 2-loop partition function we are able to compute the 3-point couplings for abelian twist fields on generic non-factorized tori, thus generalizing previous expressions valid for the 2-torus.Comment: 36 pages, 1 figure; v2: typos corrected, proof in the Appendix improve

    The Master Field of QCD2_2 and the 'T Hooft Equation

    Full text link
    We rewrite the action for QCD2QCD_2 in the light cone gauge only in terms of a bilocal mesonic field. In this formalism the 1/N1/N expansion can be done in a straightforward way by a saddle point technique that determines the master field to be identified with the vacuum expectation value of the bilocal field. Finally we show that the equation of motion for the fluctuations around the master field is identical with the 't Hooft meson equation.Comment: 7 pages, Latex, NORDITA-93-4

    N=2 four-dimensional gauge theories from fractional branes

    Get PDF
    This is a pedagogical and extended version of the results published in Refs. [1,2] and presented by the authors in various talks during the last year. We discuss the type II D-branes (both regular and fractional) of the orbifold R^{1,5}*R^4/Z_2, we determine their corresponding supergravity solution and show how this can be used to study the properties of N=2 super Yang-Mills. Supergravity is able to reproduce the perturbative moduli space of the gauge theory, while it does not encode the non-perturbative corrections. The short distance region of space-time, which corresponds to the infrared region of the gauge theory, is excised by an enhancon mechanism, and more states should be included in the low energy effective action in order to enter inside the enhancon and recover the instanton corrections. (To be published on a Memorial Volume commemorating Michael Marinov)Comment: 44 pages, AMS-LaTeX, no figure

    Fractional Branes and N=1 Gauge Theories

    Full text link
    We discuss fractional D3-branes on the orbifold C^3/Z_2*Z_2. We study the open and the closed string spectrum on this orbifold. The corresponding N=1 theory on the brane has, generically, a U(N_1)*U(N_2)*U(N_3)*U(N_4) gauge group with matter in the bifundamental. In particular, when only one type of brane is present, one obtains pure N=1 Yang-Mills. We study the coupling of the branes to the bulk fields and present the corresponding supergravity solution, valid at large distances. By using a probe analysis, we are able to obtain the Wilsonian beta-function for those gauge theories that possess some chiral multiplet. Although, due to the lack of moduli, the probe technique is not directly applicable to the case of pure N=1 Yang-Mills, we point out that the same formula gives the correct result also for this case.Comment: 21 pages, AMS-LaTeX, v2: references added and typos correcte

    N=1 Matter from Fractional Branes

    Get PDF
    We study a bound state of fractional D3-branes localized inside the world-volume of fractional D7-branes on the orbifold C^3/Z_2 x Z_2. We determine the open string spectrum that leads to N=1 U(N1)xU(N2)xU(N3)xU(N4) gauge theory with matter having the number of D7-branes as a flavor index. We derive the linearized boundary action of the D7-brane on this orbifold using the boundary state formalism and we discuss the tadpole cancellation. After computing the asymptotic expression of the supergravity solution the anomalies of the gauge theory are reproduced.Comment: LaTeX 20 pages, 1 figure, small changes and references adde

    Gauge theory renormalizations from the open bosonic string

    Get PDF
    We present a unified point of view on the different methods available in the literature to extract gauge theory renormalization constants from the low-energy limit of string theory. The Bern-Kosower method, based on an off-shell continuation of string theory amplitudes, and the construction of low-energy string theory effective actions for gauge particles, can both be understood in terms of strings interacting with background gauge fields, and thus reproduce, in the low-energy limit, the field theory results of the background field method. We present in particular a consistent off-shell continuation of the one-loop gluon amplitudes in the open bosonic string that reproduces exactly the results of the background field method in the Feynman gauge.Comment: 14 pages, latex, no figure

    The open string pair-production rate enhancement by a magnetic flux

    Full text link
    We extend the amplitude calculations of \cite{Lu:2009yx} to exhaust the remaining cases for which one set of Dp_p branes carrying a flux (electric or magnetic) is placed parallel at separation to the other set carrying also a flux but with the two fluxes sharing at most one common field-strength index. We then find that the basic structure of amplitudes remains the same when the two fluxes share at least one common index but it is more general when the two fluxes share no common index. We discuss various properties of the amplitudes such as the large separation limit, the onset of various instabilities and the open string pair production. In particular, when one flux is electric and weak and the other is magnetic and fixed, we find that the open string pair production rate is greatly enhanced by the presence of this magnetic flux when the two fluxes share no common field-strength index and this rate becomes significant when the separation is on the order of string scale.Comment: 33 pages, no figures, a few points refined to the published version JHEP09(2009)09

    Closed string exchanges on C2/Z2C^2/Z_2 in a background B-field

    Full text link
    In an earlier work it was shown that the IR singularities arising in the nonplanar one loop two point function of a noncommutative N=2{\cal N}=2 gauge theory can be reproduced exactly from the massless closed string exchanges. The noncommutative gauge theory is realised on a fractional D3D_3 brane localised at the fixed point of the C2/Z2C^2/Z_2 orbifold. In this paper we identify the contributions from each of the closed string modes. The sum of these adds upto the nonplanar two-point function.Comment: 27 page
    • …
    corecore