20 research outputs found

    Effects of tetraamine crosslinking agents on the thermomechanical properties of PMR polyimide composites

    Get PDF
    The effects were investigated of partial substitution of tetraamine crosslinking agents for diamine reactants on the thermomechanical properties of PMR polyimide resins and graphite fiber-reinforced composites. The effect of tetraamine content on isothermal weight loss, glass transition, and softening temperatures of neat resin samples is discussed. Composites were fabricated using PMR methodology. Monomeric solution of various stoichiometric ratios was used to impregnate Hercules HTS graphite fiber. The mechanical property retention characteristics of the composites at 316 C (600 F) are described

    Lower-curing-temperature PMR polyimides

    Get PDF
    Partial substitution of a p-aminostyrene end-cap for the monomethyl ester of 5-norbornene-2, 3-dicarboxylic acid lowered the final cure temperature of typical PMR resins from 600 F to 500 F. The weight loss characteristics of neat resins and graphite fiber composites prepared by using the mixed end-cap approach were determined at 600 F. The room temperature and short-time elevated temperature mechanical properties of the composites at 550 F and 600 F were determined. The mechanical property retention characteristics of the composites at 550 F and 600 F are discussed

    The 371 deg C mechanical properties of graphite/polyimide composites

    Get PDF
    A series of condensation polyimides based on pyromellitic dianhydride is synthesized and evaluated for potential application at 371 C. Several three-and four-ring benzenoid diamine systems containing oxygen bridging groups are investigated. Thermomechanical analysis of neat resin specimens indicate that the polyimide prepared from the dimethyl ester of pyrometallitic acid (PMDE) and 2,2-bis4-(4'-aminophenoxy) phenyl]-1,1,1,3,3,3- hexafluoropropane (BDAF) is the only resin system which has a glass transition temperature (Tg) above 371 C. The Tg of the PMDE/BDAF polyimide is found to be 390 C after a postcure air at 371 C for 24 hr. Unidirectional composites are fabricated from the PMDE/BDAF system and unsized Celion 6000 graphite fibers. Final cure temperatures in the range of 371 to 427 C with an applied pressure of 10.34 to 13.78 MPa are investigated. The void content of the composites ranges from 4.6 to 8.6 percent. Composites cured at 399 C under a pressure of 10.34 MPa and postcured in air at 371 C for 24 hr exhibit the highest 371 C interlaminar shear strength (ILSS, 40.7 MPa) and flexural strength (758 MPa). The thermo-oxidative stability of the composites is determined by subjecting specimens to isothermal exposure at 371 C in air at atmospheric pressure, as well as a pressure of 0.52 MPa. Specimens exposed at atmospheric pressure exhibit a weight loss of 12 percent after 200 hr of exposure and 88 percent retention of its original 371 C ILSS. In contrast, the specimens exposed at 0.52 MPa pressure exhibit a comparable weight loss after only 72 hr, and a 71 percent retention of its original 371 C ILSS

    Low temperature cross linking polyimides

    Get PDF
    A polyimide is formed by cross linking a prepolymer formed by reacting a polyfunctional ester, a polyfunctional amine, and an end-capping unit. By providing an end-capping unit, the prepolymer is curable at a relatively low temperature of about 175 to 245 C

    Technique for the polymerization of monomers for PPQ/graphite fiber composites

    Get PDF
    Impregnation of fiber prior to appreciable polymerization completely eliminates impregnation problems encountered with use of high viscosity high molecular weight polyphenylquinoxalines (PPQ) solutions. Major part of polymerization of reactant mixture is conducted on fiber during solvent removal and final curing stages

    Thermally stable polyimides from solutions of monomeric reactants

    Get PDF
    Monomer solutions have high solubility and low solution viscosity. Since monomers are shipped in powder form and reaction to polyimide-acid prepolymer is omitted, the cost is low and handling is easy

    Curing agent for polyepoxides and epoxy resins and composites cured therewith

    Get PDF
    A curing for a polyepoxide is described which contains a divalent aryl radical such as phenylene a tetravalent aryl radical such as a tetravalent benzene radical. An epoxide is cured by admixture with the curing agent. The cured epoxy product retains the usual properties of cured epoxides and, in addition, has a higher char residue after burning, on the order of 45% by weight. The higher char residue is of value in preventing release to the atmosphere of carbon fibers from carbon fiber-epoxy resin composites in the event of burning of the composite

    Preparation of polyimides from mixtures of monomeric diamines and esters of polycarboxylic acids

    Get PDF
    Polyimides having high thermal and oxidative stability are prepared by the reaction of a mixture of monomers comprising (1) a dialkyl or tetraalkyl ester of an aromatic tetracarboxylic acid; (2) an aromatic diamine; and (3) a monoalkyl or dialkyl ester of a dicarboxylic acid where in the ratio of a:b:c is n:(n+1):2, wherein n has a value from 1 to 20. The mixture of monomers is prepared in a 30 to 70 percent by weight solution of an organic solvent, a substrate impregnated with the solution and heated at 50 to 205 C to remove said solvent and form a low molecular weight prepolymer, and thereafter heated at 275 to 350 C to cure to a high molecular weight polyimide

    Effects of graphite fiber stability on the properties of PMR polyimide composites

    Get PDF
    The effect of the stability of graphite fibers on composite properties after exposure in air at 600 F was investigated. Composites were fabricated from PMR-15 and PMR-2 monomer solutions, using HTS-2 and Celion 6000 graphite fibers as the reinforcement. The effect of long-term exposure in air at 600 F on composite weight loss and mechanical properties was determined. These composites exhibited a significantly increased lifetime at that temperature compared to composites fabricated from HTS fiber sold prior to 1975. The effect of the PMR-15 and PMR-II resin compositions on long-term composite performance at 600 F is also discussed

    Lower-curing-temperature PMR polyimides

    Get PDF
    Studies were performed to achieve a lower-curing-temperature PMR polyimide. The use of m-aminostyrene as the end-cap instead of the monoalkyl ester of 5-normbornene-2,3 dicarboxylic acid was investigated in typical PMR formulations. Model compound studies were also performed. Differential scanning calorimetry studies were performed on model compounds and neat resins to establish their melting and curing characteristics. The elevated temperature weight loss characteristics of neat resins and graphite fiber composites were determined. The room temperature and short-time 260 C (500 F) mechanical properties of the composites were also determined. The use of m-aminostyrene end-caps reduced the final cure temperature of PMR resins by about 55 C (100 F), but the composites prepared with these resins are limited to use temperatures of about 260 C (500 F)
    corecore