33,783 research outputs found

    A Fat Higgs with a Fat Top

    Full text link
    A new variant of the supersymmetric Fat Higgs model is presented in which the MSSM Higgses as well as the top quark are composite. The underlying theory is an s-confining SU(3) gauge theory with the MSSM gauge groups realized as gauged sub-groups of the chiral flavor symmetries. This motivates the large Yukawas necessary for the large top mass and SM-like Higgs of mass>>M_Z in a natural way as the residual of the strong dynamics responsible for the composites. This removes fine-tuning associated with these couplings present in the original Fat Higgs and New Fat Higgs models, respectively.Comment: 17 pages, 4 figures, Latex2e, uses JHEP3.cls and youngtab.sty, new references adde

    Constraints on spin-dependent parton distributions at large x from global QCD analysis

    Full text link
    We investigate the behavior of spin-dependent parton distribution functions (PDFs) at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x -> 1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.Comment: 14 pages, 3 figures, 1 tabl

    Effective mean-field equations for cigar-shaped and disk-shaped Bose-Einstein condensates

    Full text link
    By applying the standard adiabatic approximation and using the accurate analytical expression for the corresponding local chemical potential obtained in our previous work [Phys. Rev. A \textbf{75}, 063610 (2007)] we derive an effective 1D equation that governs the axial dynamics of mean-field cigar-shaped condensates with repulsive interatomic interactions, accounting accurately for the contribution from the transverse degrees of freedom. This equation, which is more simple than previous proposals, is also more accurate. Moreover, it allows treating condensates containing an axisymmetric vortex with no additional cost. Our effective equation also has the correct limit in both the quasi-1D mean-field regime and the Thomas-Fermi regime and permits one to derive fully analytical expressions for ground-state properties such as the chemical potential, axial length, axial density profile, and local sound velocity. These analytical expressions remain valid and accurate in between the above two extreme regimes. Following the same procedure we also derive an effective 2D equation that governs the transverse dynamics of mean-field disk-shaped condensates. This equation, which also has the correct limit in both the quasi-2D and the Thomas-Fermi regime, is again more simple and accurate than previous proposals. We have checked the validity of our equations by numerically solving the full 3D Gross-Pitaevskii equation.Comment: 11 pages, 7 figures; Final version published in Phys. Rev. A; Manuscript put in the archive and submitted to Phys. Rev. A on 17 July 200

    On Three-Dimensional Space Groups

    Full text link
    An entirely new and independent enumeration of the crystallographic space groups is given, based on obtaining the groups as fibrations over the plane crystallographic groups, when this is possible. For the 35 ``irreducible'' groups for which it is not, an independent method is used that has the advantage of elucidating their subgroup relationships. Each space group is given a short ``fibrifold name'' which, much like the orbifold names for two-dimensional groups, while being only specified up to isotopy, contains enough information to allow the construction of the group from the name.Comment: 26 pages, 8 figure
    corecore