2,744 research outputs found
The study of gravitational collapse model in higher dimensional space-time
We investigate the end state of the gravitational collapse of an
inhomogeneous dust cloud in higher dimensional space-time. The naked
singularities are shown to be developing as the final outcome of non-marginally
bound collapse. The naked singularities are found to be gravitationally strong
in the sense of Tipler .Comment: 6 Latex pages, No figure, Revtex styl
Quasi-spherical gravitational collapse and the role of initial data, anisotropy and inhomogeneity
In this paper, the role of anisotropy and inhomogeneity has been studied in
quasi-spherical gravitational collapse. Also the role of initial data has been
investigated in characterizing the final state of collapse. Finally, a linear
transformation on the initial data set has been presented and its impact has
been discussed.Comment: RevTex, 7 Latex pages, No figure
The effect of Pressure in Higher Dimensional Quasi-Spherical Gravitational Collapse
We study gravitational collapse in higher dimensional quasi-spherical
Szekeres space-time for matter with anisotropic pressure. Both local and global
visibility of central curvature singularity has been studied and it is found
that with proper choice of initial data it is possible to show the validity of
CCC for six and higher dimensions. Also the role of pressure in the collapsing
process has been discussed.Comment: 11 pages, 6 figures, RevTeX styl
Tripartite Entanglement versus Tripartite Nonlocality in Three-Qubit Greenberger-Horne-Zeilinger-Class States
We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for three-qubit pure states in the Greenberger-Horne-Zeilinger class. We consider a family of states known as the generalized Greenberger-Horne-Zeilinger states and derive an analytical expression relating the three-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with three-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states does violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement.We discuss further interesting properties of the generalized Greenberger-Horne-Zeilinger and maximal slice states
Collapse Dynamics of a Star of Dark Matter and Dark Energy
In this work, we study the collapse dynamics of an inhomogeneous spherically
symmetric star made of dark matter (DM) and dark energy (DE). The dark matter
is taken in the form of a dust cloud while anisotropic fluid is chosen as the
candidate for dark energy. It is investigated how dark energy modifies the
collapsing process and is examined whether dark energy has any effect on the
Cosmic Censorship Conjecture. The collapsing star is assumed to be of finite
radius and the space time is divided into three distinct regions and
, where represents the boundary of the star and
denotes the interior (exterior) of the star. The junction
conditions for matching over are specified. Role of Dark
energy in the formation of apparent horizon is studied and central singularity
is analyzed.Comment: 13 page
QPO Evolution in 2005 Outburst of the Galactic Nano Quasar GRO J1655-40
GRO J1655-40 showed significant X-ray activity in the last week of February,
2005 and remained active for the next 260 days. The rising and the decline
phases of this particular outburst show evidence for systematic movements of
the Comptonizing region, assumed to be a CENBOL, which causes the
Quasi-periodic Oscillations or QPOs. We present both the spectral and the
timing results of the RXTE/PCA data taken from these two hard spectral states.
Assuming that the QPOs originate from an oscillating shock CENBOL, we show how
the shock slowly moves in through the accretion flow during the rising phase at
a constant velocity and accelerate away outward during the later part of the
decline phase. By fitting the observed frequencies with our solution, we
extract time variation of various disk parameters such as the shock locations,
velocity etc.Comment: 5 Pages, 2 Figures, Proceeding of the 2nd Kolkata Conference on
"Observational Evidence for the Black Holes in the Universe", Published in
AIP, 200
Scaling, self-similar solutions and shock waves for V-shaped field potentials
We investigate a (1+1)-dimensional nonlinear field theoretic model with the
field potential It can be obtained as the universal small
amplitude limit in a class of models with potentials which are symmetrically
V-shaped at their minima, or as a continuum limit of certain mechanical system
with infinite number of degrees of freedom. The model has an interesting
scaling symmetry of the 'on shell' type. We find self-similar as well as shock
wave solutions of the field equation in that model.Comment: Two comments and one reference adde
Gravitational collapse due to dark matter and dark energy in the brane world scenario
Gravitational collapse of FRW brane world embedded in a conformaly flat bulk
is considered for matter cloud consists of dark matter and dark energy with
equation of state . The effect of dark
matter and dark energy is being considered first separately and then a
combination of them both with and without interaction. In some cases the
collapse leads to black hole in some other cases naked singularity appears.Comment: 10 Latex Pages, RevTex style, 4 figure
Instruments of RT-2 Experiment onboard CORONAS-PHOTON and their test and evaluation II: RT-2/CZT payload
Cadmium Zinc Telluride (CZT) detectors are high sensitivity and high
resolution devices for hard X-ray imaging and spectroscopic studies. The new
series of CZT detector modules (OMS40G256) manufactured by Orbotech Medical
Solutions (OMS), Israel, are used in the RT-2/CZT payload onboard the
CORONAS-PHOTON satellite. The CZT detectors, sensitive in the energy range of
20 keV to 150 keV, are used to image solar flares in hard X-rays. Since these
modules are essentially manufactured for commercial applications, we have
carried out a series of comprehensive tests on these modules so that they can
be confidently used in space-borne systems. These tests lead us to select the
best three pieces of the 'Gold' modules for the RT-2/CZT payload. This paper
presents the characterization of CZT modules and the criteria followed for
selecting the ones for the RT-2/CZT payload. The RT-2/CZT payload carries,
along with three CZT modules, a high spatial resolution CMOS detector for high
resolution imaging of transient X-ray events. Therefore, we discuss the
characterization of the CMOS detector as well.Comment: 26 pages, 19 figures, Accepted for publication in Experimental
Astronomy (in press
Microbial phytase supplementation in rohu, Labeo rohita, diets enhances growth performance and nutrient digestibility
- …
