9,949 research outputs found

    Kaon semileptonic decay (K_{l3}) form factors from the instanton vacuum

    Get PDF
    We investigate the kaon semileptonic decay (K_{l3}) form factors within the framework of the nonlocal chiral quark model from the instanton vacuum, taking into account the effects of flavor SU(3) symmetry breaking. We also consider the problem of gauge invariance arising from the momentum-dependent quark mass in the present work. All theoretical calculations are carried out without any adjustable parameter, the average instanton size (rho ~ 1/3 fm) and the inter-instanton distance (R ~ 1 fm) having been fixed. We also show that the present results satisfy the Callan-Treiman low-energy theorem as well as the Ademollo-Gatto theorem. Using the K_{l3} form factors, we evaluate relevant physical quantities. It turns out that the effects of flavor SU(3) symmetry breaking are essential in reproducing the kaon semileptonic form factors. The present results are in a good agreement with experiments, and are compatible with other model calculations.Comment: 12 pages, 3 figures, submitted to PR

    Blending in Future Space-based Microlensing Surveys

    Get PDF
    We investigate the effect of blending in future gravitational microlensing surveys by carrying out simulation of Galactic bulge microlensing events to be detected from a proposed space-based lensing survey. From this simulation, we find that the contribution of the flux from background stars to the total blended flux will be equivalent to that from the lens itself despite the greatly improved resolution from space observations, implying that characterizing lenses from the analysis of the blended flux would not be easy. As a method to isolate events for which most of the blended flux is attributable to the lens, we propose to use astrometric information of source star image centroid motion. For the sample of events obtained by imposing a criterion that the centroid shift should be less than three times of the astrometric uncertainty among the events for which blending is noticed with blended light fractions fB>0.2f_{\rm B}>0.2, we estimate that the contamination of the blended flux by background stars will be less than 20% for most (90\sim 90%) of the sample events. The expected rate of these events is 700\gtrsim 700 events/yr, which is large enough for the statistical analysis of the lens populations.Comment: total 6 pages, including 5 figures, ApJ, in pres

    Half-integer Higher Spin Fields in (A)dS from Spinning Particle Models

    Get PDF
    We make use of O(2r+1) spinning particle models to construct linearized higher-spin curvatures in (A)dS spaces for fields of arbitrary half-integer spin propagating in a space of arbitrary (even) dimension: the field potentials, whose curvatures are computed with the present models, are spinor-tensors of mixed symmetry corresponding to Young tableaux with D/2 - 1 rows and r columns, thus reducing to totally symmetric spinor-tensors in four dimensions. The paper generalizes similar results obtained in the context of integer spins in (A)dS.Comment: 1+18 pages; minor changes in the notation, references updated. Published versio

    Counterterms in semiclassical Horava-Lifshitz gravity

    Full text link
    We analyze the semiclassical Ho\v{r}ava-Lifshitz gravity for quantum scalar fields in 3+1 dimensions. The renormalizability of the theory requires that the action of the scalar field contains terms with six spatial derivatives of the field, i.e. in the UV, the classical action of the scalar field should preserve the anisotropic scaling symmetry (tL2zt,t \to L^{2z}t, xL2x\vec{x} \to L^2 \vec{x}, with z=3z=3) of the gravitational action. We discuss the renormalization procedure based on adiabatic subtraction and dimensional regularization in the weak field approximation. We verify that the divergent terms in the adiabatic expansion of the expectation value of the energy-momentum tensor of the scalar field contain up to six spatial derivatives, but do not contain more than two time derivatives. We compute explicitly the counterterms needed for the renormalization of the theory up to second adiabatic order and evaluate the associated β\beta functions in the minimal subtraction scheme.Comment: 8 page

    Observational Evidence for the Effect of Amplification Bias in Gravitational Microlensing Experiments

    Get PDF
    Recently Alard\markcite{alard1996} proposed to detect the shift of a star's image centroid, δx\delta x, as a method to identify the lensed source among blended stars. Goldberg & Wo\'zniak\markcite{goldberg1997} actually applied this method to the OGLE-1 database and found that 7 out of 15 events showed significant centroid shifts of δx0.2\delta x \gtrsim 0.2 arcsec. The amount of centroid shift has been estimated theoretically by Goldberg.\markcite{goldberg1997} However, he treated the problem in general and did not apply it to a particular survey or field, and thus based his estimates on simple toy model luminosity functions (i.e., power laws). In this paper, we construct the expected distribution of δx\delta x for Galactic bulge events by using the precise stellar LF observed by Holtzman et al.\markcite{holtzman1998} using HST. Their LF is complete up to MI9.0M_I\sim 9.0 (MV12M_V\sim 12), corresponding to faint M-type stars. In our analysis we find that regular blending cannot produce a large fraction of events with measurable centroid shifts. By contrast, a significant fraction of events would have measurable centroid shifts if they are affected by amplification-bias blending. Therefore, Goldberg & Wo\'zniak's measurements of large centroid shifts for a large fraction of microlensing events confirms the prediction of Han and Alard that a large fraction of Galactic bulge events are affected by amplification-bias blending.Comment: total 15 pages, including 6 figures, and no Table, submitted to ApJ on Apr 26 1998, email [email protected]

    On the massive gluon propagator, the PT-BFM scheme and the low-momentum behaviour of decoupling and scaling DSE solutions

    Get PDF
    We study the low-momentum behaviour of Yang-Mills propagators obtained from Landau-gauge Dyson-Schwinger equations (DSE) in the PT-BFM scheme. We compare the ghost propagator numerical results with the analytical ones obtained by analyzing the low-momentum behaviour of the ghost propagator DSE in Landau gauge, assuming for the truncation a constant ghost-gluon vertex and a simple model for a massive gluon propagator. The asymptotic expression obtained for the regular or decoupling ghost dressing function up to the order O(q2){\cal O}(q^2) is proven to fit pretty well the numerical PT-BFM results. Furthermore, when the size of the coupling renormalized at some scale approaches some critical value, the numerical PT-BFM propagators tend to behave as the scaling ones. We also show that the scaling solution, implying a diverging ghost dressing function, cannot be a DSE solution in the PT-BFM scheme but an unattainable limiting case.Comment: 16 pages, 2 figs., 2 tabs (updated version to be published in JHEP

    Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields

    Full text link
    Conformal totally symmetric arbitrary spin bosonic fields in flat space-time of even dimension greater than or equal to four are studied. Second-derivative (ordinary-derivative) formulation for such fields is developed. We obtain gauge invariant Lagrangian and the corresponding gauge transformations. Gauge symmetries are realized by involving the Stueckelberg and auxiliary fields. Realization of global conformal boost symmetries on conformal gauge fields is obtained. Modified de Donder gauge condition and de Donder-Stueckelberg gauge condition are introduced. Using the de Donder-Stueckelberg gauge frame, equivalence of the ordinary-derivative and higher-derivative approaches is demonstrated. On-shell degrees of freedom of the arbitrary spin conformal field are analyzed. Ordinary-derivative light-cone gauge Lagrangian of conformal fields is also presented. Interrelations between the ordinary-derivative gauge invariant formulation of conformal fields and the gauge invariant formulation of massive fields are discussed.Comment: 51 pages, v2: Results and conclusions of v1 unchanged. In Sec.3, brief review of higher-derivative approaches added. In Sec.4, new representations for Lagrangian, modified de Donder gauge, and de Donder-Stueckelberg gauge added. In Sec.5, discussion of interrelations between the ordinary-derivative and higher-derivative approaches added. Appendices A,B,C,D and references adde

    No-boundary measure and preference for large e-foldings in multi-field inflation

    Full text link
    The no-boundary wave function of quantum gravity usually assigns only very small probability to long periods of inflation. This was a reason to doubt about the no-boundary wave function to explain the observational universe. We study the no-boundary proposal in the context of multi-field inflation to see whether the number of fields changes the situation. For a simple model, we find that indeed the no-boundary wave function can give higher probability for sufficient inflation, but the number of fields involved has to be very high.Comment: 16 pages, 2 figure

    A Comparison of the Intrinsic Shapes of Two Different Types of Dwarf Galaxies: Blues Compact Dwarfs and Dwarf Ellipticals

    Get PDF
    We measure the apparent shapes for a sample of 62 blue compact dwarf galaxies (BCDs), and compare them with the apparent shapes for a sample of 80 dwarf elliptical galaxies (dEs). The BCDs are flatter, on average, than the dEs, but the difference is only marginally significant. We then use both non-parametric and parametric techniques to determine possible distributions of intrinsic shapes for the BCDs. The hypothesis that BCDs are oblate spheroids can be ruled out with a high confidence level (>99> 99%), but the hypothesis that they are prolate spheroids cannot be excluded. The apparent shapes of BCDs are totally consistent with the hypothesis that they are triaxial ellipsoids. If the intrinsic axis ratios, β\beta and γ\gamma, are distributed according to a Gaussian with means β0\beta_0 and γ0\gamma_0 and standard deviation σ\sigma, we find the best-fitting distribution for BCDs has (β0,γ0,σ)=(0.66,0.55,0.16)(\beta_0,\gamma_0,\sigma)= (0.66,0.55,0.16), while that for dEs has (β0,γ0,σ)=(0.85,0.64,0.24)(\beta_0,\gamma_0,\sigma)= (0.85,0.64,0.24). Our results are consistent with the hypothesis that BCDs have a close evolutionary relation with dEs.Comment: total 23 pages, 9 figures, and 1 Table, submitted to ApJ on Sep 19 1997. Email addresses: [email protected], [email protected], [email protected], [email protected], [email protected]

    Rearrangement of cluster structure during fission processes

    Full text link
    Results of molecular dynamics simulations of fission reactions Na102+Na7++Na3+Na_{10}^{2+} \to Na_7^+ + Na_3^+ and Na182+2Na9+Na_{18}^{2+} \to 2 Na_9^+ are presented. Dependence of the fission barriers on isomer structure of the parent cluster is analyzed. It is demonstrated that the energy necessary for removing homothetic groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. Importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual separation of the daughter fragments begins and/or forming a "neck" between the separating fragments
    corecore