18,890 research outputs found

    The surface-tension-driven evolution of a two-dimensional annular viscous tube

    Get PDF
    We consider the evolution of an annular two-dimensional region occupied by viscous fluid driven by surface tension and applied pressure at the free surfaces. We assume that the thickness of the domain is small compared with its circumference so that it may be described as a thin viscous sheet whose ends are joined to form a closed loop. Analytical and numerical solutions of the resulting model are obtained and we show that it is well posed whether run forwards or backwards in time. This enables us to determine, in many cases explicitly, which initial shapes will evolve into a desired final shape. We also show how the application of an internal pressure may be used to control the evolution. This work is motivated by the production of non-axisymmetric capillary tubing via the Vello process. Molten glass is fed through a die and drawn off vertically, while the shape of the cross-section evolves under surface tension and any applied pressure as it flows downstream. Here the goal is to determine the die shape required to achieve a given desired final shape, typically square or rectangular. We conclude by discussing the role of our two-dimensional model in describing the three-dimensional tube-drawing process

    Gambling in Great Britain:a response to Rogers

    Get PDF
    A recent issue of Practice: Social Work in Action featured a paper by Rogers that examined whether the issue of problem gambling was a suitable case for social work. Rogers’ overview was (in various places) out of date, highly selective, contradictory, presented unsupported claims and somewhat misleading. Rogers’ paper is to be commended for putting the issue of problem gambling on the social work agenda. However, social workers need up-to-date information and contextually situated information if they are to make informed decisions in helping problem gamblers

    Mathematical modelling of non-axisymmetric capillary tube drawing

    Get PDF
    This paper concerns the manufacture of non-axisymmetric capillary tubing via the Velloprocess, in which molten glass is fed through a die and drawn off vertically. The shapeof the cross-section evolves under surface tension as it flows downstream. The aim is to achieve a given desired final shape, typically square or rectangular, and our goal is to determine the required die shape. We use the result that, provided the tube is slowly varying in the axial direction, each cross-section evolves like a two-dimensional Stokes flow when expressed in suitably scaled Lagrangian coordinates. This allows us to use a previously derived model for the surface- tension-driven evolution of a thin two-dimensional viscous tube. We thus obtain, and solve analytically, equations governing the axial velocity, thickness and circumference of the tube, as well as its shape. The model is extended to include non-isothermal effects

    Phase diagram for the ν=0\nu=0 quantum Hall state in monolayer graphene

    Full text link
    The ν=0\nu=0 quantum Hall state in a defect-free graphene sample is studied within the framework of quantum Hall ferromagnetism. We perform a systematic analysis of the pseudospin anisotropies, which arise from the valley and sublattice asymmetric short-range electron-electron (e-e) and electron-phonon (e-ph) interactions. The phase diagram, obtained in the presence of generic pseudospin anisotropy and the Zeeman effect, consists of four phases characterized by the following orders: spin-polarized ferromagnetic, canted antiferromagnetic, charge density wave, and Kekul\'{e} distortion. We take into account the Landau level mixing effects and show that they result in the key renormalizations of parameters. First, the absolute values of the anisotropy energies become greatly enhanced and can significantly exceed the Zeeman energy. Second, the signs of the anisotropy energies due to e-e interactions can change upon renormalization. A crucial consequence of the latter is that the short-range e-e interactions alone could favor any state on the phase diagram, depending on the details of interactions at the lattice scale. On the other hand, the leading e-ph interactions always favor the Kekul\'{e} distortion order. The possibility of inducing phase transitions by tilting the magnetic field is discussed.Comment: 25 pages, 19 figs; v2: nearly identical to the published version, some stylistic improvements, Tables I-IV added, anisotropy energies redefined as u -> u/2 for aesthetic reaso

    Consistent Quantum Counterfactuals

    Get PDF
    An analysis using classical stochastic processes is used to construct a consistent system of quantum counterfactual reasoning. When applied to a counterfactual version of Hardy's paradox, it shows that the probabilistic character of quantum reasoning together with the ``one framework'' rule prevents a logical contradiction, and there is no evidence for any mysterious nonlocal influences. Counterfactual reasoning can support a realistic interpretation of standard quantum theory (measurements reveal what is actually there) under appropriate circumstances.Comment: Minor modifications to make it agree with published version. Latex 8 pages, 2 figure

    Optimal Eavesdropping in Quantum Cryptography. II. Quantum Circuit

    Full text link
    It is shown that the optimum strategy of the eavesdropper, as described in the preceding paper, can be expressed in terms of a quantum circuit in a way which makes it obvious why certain parameters take on particular values, and why obtaining information in one basis gives rise to noise in the conjugate basis.Comment: 7 pages, 1 figure, Latex, the second part of quant-ph/970103

    On the parameters of the Kerr-NUT-(anti-)de Sitter space-time

    Full text link
    Different forms of the metric for the Kerr-NUT-(anti-)de Sitter space-time are being widely used in its extension to higher dimensions. The purpose of this note is to relate the parameters that are being used to the physical parameters (mass, rotation, NUT and cosmological constant) in the basic four dimensional situation.Comment: 4 pages. To appear as a Note in Classical and Quantum Gravit

    Carbon Nanotubes in Helically Modulated Potentials

    Get PDF
    We calculate effects of an applied helically symmetric potential on the low energy electronic spectrum of a carbon nanotube in the continuum approximation. The spectrum depends on the strength of this potential and on a dimensionless geometrical parameter, P, which is the ratio of the circumference of the nanotube to the pitch of the helix. We find that the minimum band gap of a semiconducting nanotube is reduced by an arbitrarily weak helical potential, and for a given field strength there is an optimal P which produces the biggest change in the band gap. For metallic nanotubes the Fermi velocity is reduced by this potential and for strong fields two small gaps appear at the Fermi surface in addition to the gapless Dirac point. A simple model is developed to estimate the magnitude of the field strength and its effect on DNA-CNT complexes in an aqueous solution. We find that under typical experimental conditions the predicted effects of a helical potential are likely to be small and we discuss several methods for increasing the size of these effects.Comment: 12 pages, 10 figures. Accepted for publication in Physical Review B. Image quality reduced to comply with arxiv size limitation

    Introduction to Arithmetic Mirror Symmetry

    Full text link
    We describe how to find period integrals and Picard-Fuchs differential equations for certain one-parameter families of Calabi-Yau manifolds. These families can be seen as varieties over a finite field, in which case we show in an explicit example that the number of points of a generic element can be given in terms of p-adic period integrals. We also discuss several approaches to finding zeta functions of mirror manifolds and their factorizations. These notes are based on lectures given at the Fields Institute during the thematic program on Calabi-Yau Varieties: Arithmetic, Geometry, and Physics
    corecore