13,889 research outputs found

    Particulate erosion mechanisms

    Get PDF
    Particulate damage and erosion of ductile metals are today plaguing design and field engineers in diverse fields of engineering and technology. It was found that too many models and theories were proposed leading to much speculation from debris analysis and failure mechanism postulations. Most theories of solid particle erosion are based on material removal models which do not fully represent the actual physical processes of material removal. The various mechanisms proposed thus far are: melting, low-cycle fatigue, extrusion, delamination, shear localization, adhesive material transfer, etc. The experimental data on different materials highlighting the observed failure modes of the deformation and cutting wear processes using optical and scanning electron microscopy are presented. The most important mechanisms proved from the experimental observations of the specimens exposed to both spherical and angular particles are addressed, and the validity of the earlier theories discussed. Both the initial stages of damage and advanced stages of erosion were studied to gain a fundamental understanding of the process

    Time dependence of solid-particle impingement erosion of an aluminum alloy

    Get PDF
    Erosion studies were conducted on 6061-T6511 aluminum alloy by using jet impingement of glass beads and crushed glass particles to investigate the influence of exposure time on volume loss rate at different pressures. The results indicate a direct relationship between erosion-versus-time curves and pitmorphology (width, depth, and width-depth ratio)-versus-time curves for both glass forms. Extensive erosion data from the literature were analyzed to find the variations of erosion-rate-versus-time curves with respect to the type of device, the size and shape of erodent particles, the abrasive charge, the impact velocity, etc. Analysis of the experimental data, obtained with two forms of glass, resulted in three types of erosion-rate-versus-time curves: (1) curves with incubation, acceleration, and steadystate periods (type 1); (2) curves with incubation, acceleration, decleration, and steady-state periods (type 3); and (3) curves with incubation, acceleration, peak rate, and deceleration periods (type 4). The type 4 curve is a less frequently seen curve and was not reported in the literature. Analysis of extensive literature data generally indicated three types of erosion-rate-versus-time curves. Two types (types 1 and 3) were observed in the present study; the third type involves incubation (and deposition), acceleration, and steady-state periods (type 2). Examination of the extensive literature data indicated that it is absolutely necessary to consider the corresponding stages or periods of erosion in correlating and characterizing erosion resistance of a wide spectrum of ductile materials

    Long-term predictive capability of erosion models

    Get PDF
    A brief overview of long-term cavitation and liquid impingement erosion and modeling methods proposed by different investigators, including the curve-fit approach is presented. A table was prepared to highlight the number of variables necessary for each model in order to compute the erosion-versus-time curves. A power law relation based on the average erosion rate is suggested which may solve several modeling problems

    Characterization and measurement of polymer wear

    Get PDF
    Analytical tools which characterize the polymer wear process are discussed. The devices discussed include: visual observation of polymer wear with SEM, the quantification with surface profilometry and ellipsometry, to study the chemistry with AES, XPS and SIMS, to establish interfacial polymer orientation and accordingly bonding with QUARTIR, polymer state with Raman spectroscopy and stresses that develop in polymer films using a X-ray double crystal camera technique

    Spherical micro-glass particle impingement studies of thermoplastic materials at normal incidence

    Get PDF
    Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials

    Empirical relations for cavitation and liquid impingement erosion processes

    Get PDF
    A unified power-law relationship between average erosion rate and cumulative erosion is presented. Extensive data analyses from venturi, magnetostriction (stationary and oscillating specimens), liquid drop, and jet impact devices appear to conform to this relation. A normalization technique using cavitation and liquid impingement erosion data is also presented to facilitate prediction. Attempts are made to understand the relationship between the coefficients in the power-law relationships and the material properties

    Low-temperature solder for joining large cryogenic structures

    Get PDF
    Three joining methods were considered for use in fabricating cooling coils for the National Transonic Facility. After analysis and preliminary testing, soldering was chosen as the cooling coil joining technique over mechanical force fit and brazing techniques. Charpy V-Notch tests, cyclic thermal tests (ambient to 77.8 K) and tensile tests at cryogenic temperatures were performed on solder joints to evaluate their structural integrity. It was determined that low temperature solder can be used to ensure good fin-to-tube contact for cooling-coil applications

    Friction and wear of iron and nickel in sodium hydroxide solutions

    Get PDF
    A loaded spherical aluminum oxider rider was made to slide, while in various solutions, on a flat iron or nickel surface reciprocate a distance of 1 cm. Time of experiments was 1 hr during which the rider passed over the rider passed over the center section of the track 540 times. Coefficients of friction were measured throughout the experiments. Wear was measured by scanning the track with a profilometer. Analysis of some of the wear tracks included use of the SEM (scanning electron microscrope) and XPS (X-ray photoelectron spectroscopy). Investigated were the effect of various concentractions of NaOH and of water. On iron, increasing NaOH concentration above 0.01 N caused the friction and wear to decrease. This decrease is accompanied by a decrease in surface concentration of ferric oxide (Fe2O3) while more complex iron-oxygen compounds, not clearly identified, also form. At low concentrations of NaOH, such as 0.01 N, where the friction is high, the wear track is badely torn up and the surface is broken. At high concentration, such as 10 N, where the friction is low, the wear track is smooth. The general conclusion is that NaOH forms a protective, low friction film on iron which is destroyed by wear at low concentrations but remains intact at high concentrations of NaOH. Nickel behaves differently than iron in that only a little NaOH gives a low coefficient of friction and a surface which, although roughened in the wear track, remains intact

    Friction and Wear of Iron in Corrosive Media

    Get PDF
    Friction and wear experiments were conducted with elemental iron exposed to various corrosive media including two acids, base, and a salt. Studies involved various concentrations of nitric and sulfuric acids, sodium hydroxide, and sodium chloride. Load and reciprocating sliding speed were kept constant. With the base NaOH an increase in normality beyond 0.01 N resulted in a decrease in both friction and wear. X-ray photoelectron spectroscopy (XPS) analysis of the surface showed a decreasing concentration of ferric oxide (Fe2O3) on the iron surface with increasing NaOH concentration. With nitric acid (HNO3) friction decreased in solutions to 0.05 N, beyond which no further change in friction was observed. The concentration of Fe2O3 on the surface continued to increase with increasing normality. XPS analysis revealed the presence of sulfates in addition of Fe2O3 on surfaces exposed to sulfuric acid and iron chlorides but no sodium on surfaces exposed to NaCl
    corecore