607 research outputs found

    Ferromagnetic quantum critical fluctuations in YbRh_2(Si_{0.95}Ge_{0.05})_2

    Full text link
    The bulk magnetic susceptibility χ(T,B)\chi(T,B) of YbRh2_2(Si0.95_{0.95}Ge0.05_{0.05})2_2 has been investigated %by ac-and dc-magnetometry at low temperatures and close to the field-induced quantum critical point at Bc=0.027B_c=0.027 T. For B0.05B\leq 0.05 T a Curie-Weiss law with a negative Weiss temperature is observed at temperatures below 0.3 K. Outside this region, the susceptibility indicates ferromagnetic quantum critical fluctuations: χ(T)T0.6\chi(T)\propto T^{-0.6} above 0.3 K, while at low temperatures the Pauli susceptibility follows χ0(BBc)0.6\chi_0\propto (B-B_c)^{-0.6} and scales with the coefficient of the T2T^2 term in the electrical resistivity. The Sommerfeld-Wilson ratio is highly enhanced and increases up to 30 close to the critical field.Comment: Physical Review Letters, to be publishe

    Scaling of the magnetic entropy and magnetization in YbRh_2(Si_{0.95}Ge_{0.05})_2

    Full text link
    The magnetic entropy of YbRh_2(Si_{0.95}Ge_{0.05})_2 is derived from low-temperature (T18T\geq 18 mK) specific heat measurements. Upon field-tuning the system to its antiferromagnetic quantum critical point unique temperature over magnetic field scaling is observed indicating the disintegration of heavy quasiparticles. The field dependence of the entropy equals the temperature dependence of the dc-magnetization as expected from the Maxwell relation. This proves that the quantum-critical fluctuations affect the thermal and magnetic properties in a consistent way.Comment: 6 pages, 2 figures, manuscript submitted to SCES2004 conferenc

    Quantum criticality in the cubic heavy-fermion system CeIn_{3-x}Sn_x

    Full text link
    We report a comprehensive study of CeIn3x_{3-x}Snx_x (0.55x0.8)(0.55 \leq x \leq 0.8) single crystals close to the antiferromagnetic (AF) quantum critical point (QCP) at xc0.67x_c\approx 0.67 by means of the low-temperature thermal expansion and Gr\"uneisen parameter. This system represents the first example for a {\it cubic} heavy fermion (HF) in which TNT_{\rm N} can be suppressed {\it continuously} down to T=0. A characteristic sign change of the Gr\"uneisen parameter between the AF and paramagnetic state indicates the accumulation of entropy close to the QCP. The observed quantum critical behavior is compatible with the predictions of the itinerant theory for three-dimensional critical spinfluctuations. This has important implications for the role of the dimensionality in HF QCPs.Comment: Physical Review Letters, to be publishe

    Tuning Heavy Fermion Systems into Quantum Criticality by Magnetic Field

    Full text link
    We discuss a series of thermodynamic, magnetic and electrical transport experiments on the two heavy fermion compounds CeNi2Ge2 and YbRh2Si2 in which magnetic fields, B, are used to tune the systems from a Non-Fermi liquid (NFL) into a field-induced FL state. Upon approaching the quantum-critical points from the FL side by reducing B we analyze the heavy quasiparticle (QP) mass and QP-QP scattering cross sections. For CeNi2Ge2 the observed behavior agrees well with the predictions of the spin-density wave (SDW) scenario for three-dimensional (3D) critical spin-fluctuations. By contrast, the observed singularity in YbRh2Si2 cannot be explained by the itinerant SDW theory for neither 3D nor 2D critical spinfluctuations. Furthermore, we investigate the magnetization M(B) at high magnetic fields. For CeNi2Ge2 a metamagnetic transition is observed at 43 T, whereas for YbRh2Si2 a kink-like anomaly occurs at 10 T in M vs B (applied along the easy basal plane) above which the heavy fermion state is completely suppressed.Comment: 15 pages, 8 figures, submitted to Journal of Low Temperature Physics, special Series on "High Magnetic Field Facilities

    Magnetic-Field Induced Quantum Critical Point in YbRh2_2Si2_2

    Full text link
    We report low-temperature calorimetric, magnetic and resistivity measurements on the antiferromagnetic (AF) heavy-fermion metal YbRh2_2Si2_2 (TN={T_N =} 70 mK) as a function of magnetic field BB. While for fields exceeding the critical value Bc0{B_{c0}} at which TN0{T_N\to0} the low temperature resistivity shows an AT2{AT^2} dependence, a 1/(BBc0){1/(B-B_{c0})} divergence of A(B){A(B)} upon reducing BB to Bc0{B_{c0}} suggests singular scattering at the whole Fermi surface and a divergence of the heavy quasiparticle mass. The observations are interpreted in terms of a new type of quantum critical point separating a weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.Comment: accepted for publication in Phys. Rev. Let

    Physics of Polymorphic Transitions in CeRuSn

    Full text link
    We report a detailed study of the polymorphic transitions in ternary stannide CeRuSn on high quality single crystals through a combination of X-ray diffraction experiments conducted at 300, 275 and 120 K, and measurements of the thermal expansion, magnetization, and resistivity, along main crystallographic axes. In addition, the transition was followed as a function of pressure up to 0.8 GPa. The present X-ray diffraction data show that the room temperature polymorph consists of the lattice doubled along the c axis with respect to the CeCoAl-type structure consistent with previous reports. Upon cooling, the compound undergoes two successive transitions, first to a quintuple (290 K) and than to a triple CeCoAl superstructure at 225 K. The transitions are accompanied by a tremendous volume change due to a strong shrinking of the lattice along the c axis, which is clearly observed in thermal expansion. We advance arguments that the volume collapse originates from an increasing number of crystallographically inequivalent Ce sites and the change of ratio between the short and long Ce-Ru bonds. The observed properties of the polymorphic transition in CeRuSn are reminiscent of the transition in elementary Cerium, suggesting that similar physics, i.e., a Kondo influenced transition and strong lattice vibrations might be the driving forces

    Hall-effect evolution across a heavy-fermion quantum critical point

    Full text link
    A quantum critical point (QCP) develops in a material at absolute zero when a new form of order smoothly emerges in its ground state. QCPs are of great current interest because of their singular ability to influence the finite temperature properties of materials. Recently, heavy-fermion metals have played a key role in the study of antiferromagnetic QCPs. To accommodate the heavy electrons, the Fermi surface of the heavy-fermion paramagnet is larger than that of an antiferromagnet. An important unsolved question concerns whether the Fermi surface transformation at the QCP develops gradually, as expected if the magnetism is of spin density wave (SDW) type, or suddenly as expected if the heavy electrons are abruptly localized by magnetism. Here we report measurements of the low-temperature Hall coefficient (RHR_H) - a measure of the Fermi surface volume - in the heavy-fermion metal YbRh2Si2 upon field-tuning it from an antiferromagnetic to a paramagnetic state. RHR_H undergoes an increasingly rapid change near the QCP as the temperature is lowered, extrapolating to a sudden jump in the zero temperature limit. We interpret these results in terms of a collapse of the large Fermi surface and of the heavy-fermion state itself precisely at the QCP.Comment: 20 pages, 3 figures; to appear in Natur

    The role of illness scripts in the development of medical diagnostic expertise: Results from an interview study

    Get PDF
    In this article, we describe a study in which some current ideas about illness scripts are tested. Participants at 4 levels of medical expertise were asked to describe either a prototypical patient or the clinical picture associated with a number of different diseases. It was found that participants at intermediate levels of expertise mentioned, both absolutely and relatively, many enabling conditions (patient contextual factors such as sex, age, medical history, and occupation) when asked to describe a prototypical patient with a disease, whereas the instruction to describe the clinical picture of a disease revealed a monotonic relation with expertise level. The amount of biomedical information in the descriptions decreased with increasing expertise level for both types of instruction. In addition, a positive relation was found between number of actual patients seen with a particular disease and number of enabling conditions mentioned. These results were interpreted as supportive of the present conceptualization of the illness script theory

    Break up of heavy fermions at an antiferromagnetic instability

    Full text link
    We present results of high-resolution, low-temperature measurements of the Hall coefficient, thermopower, and specific heat on stoichiometric YbRh2Si2. They support earlier conclusions of an electronic (Kondo-breakdown) quantum critical point concurring with a field induced antiferromagnetic one. We also discuss the detachment of the two instabilities under chemical pressure. Volume compression/expansion (via substituting Rh by Co/Ir) results in a stabilization/weakening of magnetic order. Moderate Ir substitution leads to a non-Fermi-liquid phase, in which the magnetic moments are neither ordered nor screened by the Kondo effect. The so-derived zero-temperature global phase diagram promises future studies to explore the nature of the Kondo breakdown quantum critical point without any interfering magnetism.Comment: minor changes, accepted for publication in JPS

    Non Fermi Liquid behavior in the under-screened Kondo model

    Full text link
    Using the Schwinger boson spin representation, we reveal a new aspect to the physics of a partially screened magnetic moment in a metal, as described by the spin SS Kondo model. We show that the residual ferromagnetic interaction between a partially screened spin and the electron sea destabilizes the Landau Fermi liquid, forming a singular Fermi liquid with a 1/(Tln4(TK/T))1/ (T \ln ^{4} (T_{K}/T)) divergence in the low temperature specific heat coefficient CV/TC_{V}/T. A magnetic field BB tunes this system back into Landau Fermi liquid with a Fermi temperature proportional to Bln2(TK/B)B \ln^2 (T_K/B). We discuss a possible link with field-tuned quantum criticality in heavy electron materials.Comment: References corrected. Minor changes to tex
    corecore