1,163 research outputs found
Information Bottlenecks, Causal States, and Statistical Relevance Bases: How to Represent Relevant Information in Memoryless Transduction
Discovering relevant, but possibly hidden, variables is a key step in
constructing useful and predictive theories about the natural world. This brief
note explains the connections between three approaches to this problem: the
recently introduced information-bottleneck method, the computational mechanics
approach to inferring optimal models, and Salmon's statistical relevance basis.Comment: 3 pages, no figures, submitted to PRE as a "brief report". Revision:
added an acknowledgements section originally omitted by a LaTeX bu
The Origins of Computational Mechanics: A Brief Intellectual History and Several Clarifications
The principle goal of computational mechanics is to define pattern and
structure so that the organization of complex systems can be detected and
quantified. Computational mechanics developed from efforts in the 1970s and
early 1980s to identify strange attractors as the mechanism driving weak fluid
turbulence via the method of reconstructing attractor geometry from measurement
time series and in the mid-1980s to estimate equations of motion directly from
complex time series. In providing a mathematical and operational definition of
structure it addressed weaknesses of these early approaches to discovering
patterns in natural systems.
Since then, computational mechanics has led to a range of results from
theoretical physics and nonlinear mathematics to diverse applications---from
closed-form analysis of Markov and non-Markov stochastic processes that are
ergodic or nonergodic and their measures of information and intrinsic
computation to complex materials and deterministic chaos and intelligence in
Maxwellian demons to quantum compression of classical processes and the
evolution of computation and language.
This brief review clarifies several misunderstandings and addresses concerns
recently raised regarding early works in the field (1980s). We show that
misguided evaluations of the contributions of computational mechanics are
groundless and stem from a lack of familiarity with its basic goals and from a
failure to consider its historical context. For all practical purposes, its
modern methods and results largely supersede the early works. This not only
renders recent criticism moot and shows the solid ground on which computational
mechanics stands but, most importantly, shows the significant progress achieved
over three decades and points to the many intriguing and outstanding challenges
in understanding the computational nature of complex dynamic systems.Comment: 11 pages, 123 citations;
http://csc.ucdavis.edu/~cmg/compmech/pubs/cmr.ht
Statistical Complexity of Simple 1D Spin Systems
We present exact results for two complementary measures of spatial structure
generated by 1D spin systems with finite-range interactions. The first, excess
entropy, measures the apparent spatial memory stored in configurations. The
second, statistical complexity, measures the amount of memory needed to
optimally predict the chain of spin values. These statistics capture distinct
properties and are different from existing thermodynamic quantities.Comment: 4 pages with 2 eps Figures. Uses RevTeX macros. Also available at
http://www.santafe.edu/projects/CompMech/papers/CompMechCommun.htm
Chaotic Crystallography: How the physics of information reveals structural order in materials
We review recent progress in applying information- and computation-theoretic
measures to describe material structure that transcends previous methods based
on exact geometric symmetries. We discuss the necessary theoretical background
for this new toolset and show how the new techniques detect and describe novel
material properties. We discuss how the approach relates to well known
crystallographic practice and examine how it provides novel interpretations of
familiar structures. Throughout, we concentrate on disordered materials that,
while important, have received less attention both theoretically and
experimentally than those with either periodic or aperiodic order.Comment: 9 pages, two figures, 1 table;
http://csc.ucdavis.edu/~cmg/compmech/pubs/ChemOpinion.ht
Synchronizing to the Environment: Information Theoretic Constraints on Agent Learning
We show that the way in which the Shannon entropy of sequences produced by an
information source converges to the source's entropy rate can be used to
monitor how an intelligent agent builds and effectively uses a predictive model
of its environment. We introduce natural measures of the environment's apparent
memory and the amounts of information that must be (i) extracted from
observations for an agent to synchronize to the environment and (ii) stored by
an agent for optimal prediction. If structural properties are ignored, the
missed regularities are converted to apparent randomness. Conversely, using
representations that assume too much memory results in false predictability.Comment: 6 pages, 5 figures, Santa Fe Institute Working Paper 01-03-020,
http://www.santafe.edu/projects/CompMech/papers/stte.htm
Structural Drift: The Population Dynamics of Sequential Learning
We introduce a theory of sequential causal inference in which learners in a
chain estimate a structural model from their upstream teacher and then pass
samples from the model to their downstream student. It extends the population
dynamics of genetic drift, recasting Kimura's selectively neutral theory as a
special case of a generalized drift process using structured populations with
memory. We examine the diffusion and fixation properties of several drift
processes and propose applications to learning, inference, and evolution. We
also demonstrate how the organization of drift process space controls fidelity,
facilitates innovations, and leads to information loss in sequential learning
with and without memory.Comment: 15 pages, 9 figures;
http://csc.ucdavis.edu/~cmg/compmech/pubs/sdrift.ht
- …