1,163 research outputs found

    Information Bottlenecks, Causal States, and Statistical Relevance Bases: How to Represent Relevant Information in Memoryless Transduction

    Full text link
    Discovering relevant, but possibly hidden, variables is a key step in constructing useful and predictive theories about the natural world. This brief note explains the connections between three approaches to this problem: the recently introduced information-bottleneck method, the computational mechanics approach to inferring optimal models, and Salmon's statistical relevance basis.Comment: 3 pages, no figures, submitted to PRE as a "brief report". Revision: added an acknowledgements section originally omitted by a LaTeX bu

    The Origins of Computational Mechanics: A Brief Intellectual History and Several Clarifications

    Get PDF
    The principle goal of computational mechanics is to define pattern and structure so that the organization of complex systems can be detected and quantified. Computational mechanics developed from efforts in the 1970s and early 1980s to identify strange attractors as the mechanism driving weak fluid turbulence via the method of reconstructing attractor geometry from measurement time series and in the mid-1980s to estimate equations of motion directly from complex time series. In providing a mathematical and operational definition of structure it addressed weaknesses of these early approaches to discovering patterns in natural systems. Since then, computational mechanics has led to a range of results from theoretical physics and nonlinear mathematics to diverse applications---from closed-form analysis of Markov and non-Markov stochastic processes that are ergodic or nonergodic and their measures of information and intrinsic computation to complex materials and deterministic chaos and intelligence in Maxwellian demons to quantum compression of classical processes and the evolution of computation and language. This brief review clarifies several misunderstandings and addresses concerns recently raised regarding early works in the field (1980s). We show that misguided evaluations of the contributions of computational mechanics are groundless and stem from a lack of familiarity with its basic goals and from a failure to consider its historical context. For all practical purposes, its modern methods and results largely supersede the early works. This not only renders recent criticism moot and shows the solid ground on which computational mechanics stands but, most importantly, shows the significant progress achieved over three decades and points to the many intriguing and outstanding challenges in understanding the computational nature of complex dynamic systems.Comment: 11 pages, 123 citations; http://csc.ucdavis.edu/~cmg/compmech/pubs/cmr.ht

    Statistical Complexity of Simple 1D Spin Systems

    Full text link
    We present exact results for two complementary measures of spatial structure generated by 1D spin systems with finite-range interactions. The first, excess entropy, measures the apparent spatial memory stored in configurations. The second, statistical complexity, measures the amount of memory needed to optimally predict the chain of spin values. These statistics capture distinct properties and are different from existing thermodynamic quantities.Comment: 4 pages with 2 eps Figures. Uses RevTeX macros. Also available at http://www.santafe.edu/projects/CompMech/papers/CompMechCommun.htm

    Chaotic Crystallography: How the physics of information reveals structural order in materials

    Full text link
    We review recent progress in applying information- and computation-theoretic measures to describe material structure that transcends previous methods based on exact geometric symmetries. We discuss the necessary theoretical background for this new toolset and show how the new techniques detect and describe novel material properties. We discuss how the approach relates to well known crystallographic practice and examine how it provides novel interpretations of familiar structures. Throughout, we concentrate on disordered materials that, while important, have received less attention both theoretically and experimentally than those with either periodic or aperiodic order.Comment: 9 pages, two figures, 1 table; http://csc.ucdavis.edu/~cmg/compmech/pubs/ChemOpinion.ht

    Synchronizing to the Environment: Information Theoretic Constraints on Agent Learning

    Full text link
    We show that the way in which the Shannon entropy of sequences produced by an information source converges to the source's entropy rate can be used to monitor how an intelligent agent builds and effectively uses a predictive model of its environment. We introduce natural measures of the environment's apparent memory and the amounts of information that must be (i) extracted from observations for an agent to synchronize to the environment and (ii) stored by an agent for optimal prediction. If structural properties are ignored, the missed regularities are converted to apparent randomness. Conversely, using representations that assume too much memory results in false predictability.Comment: 6 pages, 5 figures, Santa Fe Institute Working Paper 01-03-020, http://www.santafe.edu/projects/CompMech/papers/stte.htm

    Structural Drift: The Population Dynamics of Sequential Learning

    Get PDF
    We introduce a theory of sequential causal inference in which learners in a chain estimate a structural model from their upstream teacher and then pass samples from the model to their downstream student. It extends the population dynamics of genetic drift, recasting Kimura's selectively neutral theory as a special case of a generalized drift process using structured populations with memory. We examine the diffusion and fixation properties of several drift processes and propose applications to learning, inference, and evolution. We also demonstrate how the organization of drift process space controls fidelity, facilitates innovations, and leads to information loss in sequential learning with and without memory.Comment: 15 pages, 9 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/sdrift.ht
    • …
    corecore