5,261 research outputs found
Urban Water Conservation and Efficiency Potential in California
Improving urban water-use efficiency is a key solution to California's short-term and longterm water challenges: from drought to unsustainable groundwater use to growing tensions over limited supplies. Reducing unnecessary water withdrawals leaves more water in reservoirs and aquifers for future use and has tangible benefits to fish and other wildlife in our rivers and estuaries. In addition, improving water-use efficiency and reducing waste can save energy, lower water and wastewater treatment costs, and eliminate the need for costly new infrastructure
Results from the CDMS II Experiment
I report recent results and the status of the Cryogenic Dark Matter Search
(CDMS II) experiment at the Soudan Underground Laboratory in Minnesota, USA. A
blind analysis of data taken by 30 detectors between October 2006 and July 2007
found zero events consistent with WIMPs elastically scattering in our Ge
detectors. This resulted in an upper limit on the spin-independent,
WIMP-nucleon cross section of 6.6 x 10^-44 cm^2 (4.6 x 10^-44 cm^2 when
combined with our previous results) at the 90% C.L. for a WIMP of mass 60
GeV/c^2. In March 2009 data taking with CDMS II stopped in order to install the
first of 5 SuperTowers of detectors for the SuperCDMS Soudan project. Analysis
of data taken between August 2007 and March 2009 is ongoing.Comment: 5 pages, 4 figures, to appear in the proceedings of the TAUP09
conference (Rome, July 1st-5th 2009
Narratives can motivate environmental action : the Whiskey Creek ocean acidification story
Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ambio 43 (2014): 592-599, doi:10.1007/s13280-013-0442-2.Even when environmental data quantify the risks and benefits of delayed responses to rapid
anthropogenic change, institutions rarely respond promptly. We propose that narratives
complementing environmental datasets can motivate responsive environmental policy. To explore
this idea, we relate a case study in which a narrative of economic loss due to regionally rapid ocean
acidification—an anthropogenic change—helped connect knowledge with action. We pose three
hypotheses to explain why narratives might be particularly effective in linking science to
environmental policy, drawing from the literature of economics, environmental policy, and
cognitive psychology. It seems that yet-untold narratives may hold similar potential for
strengthening the feedback between environmental data and policy and motivating regional
responses to other environmental problems.2015-09-0
Geometry acquisition and grid generation: Recent experiences with complex aircraft configurations
Important issues involved in working with complex geometries are discussed. Approaches taken to address complex geometry issues in the McDonnell Aircraft Computational Grid System and related geometry processing tools are discussed. The efficiency of acquiring a suitable geometry definition, the need to manipulate the geometry, and the time and skill level required to generate the grid while preserving geometric fidelity are discussed
Magnetic field induced lattice anomaly inside the superconducting state of CeCoIn: evidence of the proposed Fulde-Ferrell-Larkin-Ovchinnikov state
We report high magnetic field linear magnetostriction experiments on
CeCoIn single crystals. Two features are remarkable: (i) a sharp
discontinuity in all the crystallographic axes associated with the upper
superconducting critical field that becomes less pronounced as the
temperature increases; (ii) a distinctive second order-like feature observed
only along the c-axis in the high field (10 T ) low
temperature ( 0.35 K) region. This second order transition is
observed only when the magnetic field lies within 20 of the ab-planes and
there is no signature of it above , which raises questions regarding
its interpretation as a field induced magnetically ordered phase. Good
agreement with previous results suggests that this anomaly is related to the
transition to the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state.Comment: 3 figures, 5 page
Significant enhancement of irreversibility field in clean-limit bulk MgB2
Low resistivity ("clean") MgB2 bulk samples annealed in Mg vapor show an
increase in upper critical field Hc2(T) and irreversibility field Hirr(T) by a
factor of 2 in both transport and magnetic measurements. The best sample
displayed Hirr above 14 T at 4.2 K and 6 T at 20 K. These changes were
accompanied by an increase of the 40 K resistivity from 1.0 to 18 microohm-cm
and a lowering of the resistivity ratio from 15 to 3, while the critical
temperature Tc decreased by only 1-2 K. These results point the way to make
prepare MgB2 attractive for magnet applications.Comment: 3 pages, 4 figures, submitted to Applied Physics Letter
Gravity localization on thick branes: a numerical approach
We introduce a numerical procedure to investigate the spectrum of massive
modes and its contribution for gravity localization on thick branes. After
considering a model with an analytically known Schroedinger potential, we
present the method and discuss its applicability. With this procedure we can
study several models even when the Schroedinger potential is not known
analytically. We discuss both the occurrence of localization of gravity and the
correction to the Newtonian potential given by the massive modes.Comment: 22 pages, 12 figure
Fast Fourier Optimization: Sparsity Matters
Many interesting and fundamentally practical optimization problems, ranging
from optics, to signal processing, to radar and acoustics, involve constraints
on the Fourier transform of a function. It is well-known that the {\em fast
Fourier transform} (fft) is a recursive algorithm that can dramatically improve
the efficiency for computing the discrete Fourier transform. However, because
it is recursive, it is difficult to embed into a linear optimization problem.
In this paper, we explain the main idea behind the fast Fourier transform and
show how to adapt it in such a manner as to make it encodable as constraints in
an optimization problem. We demonstrate a real-world problem from the field of
high-contrast imaging. On this problem, dramatic improvements are translated to
an ability to solve problems with a much finer grid of discretized points. As
we shall show, in general, the "fast Fourier" version of the optimization
constraints produces a larger but sparser constraint matrix and therefore one
can think of the fast Fourier transform as a method of sparsifying the
constraints in an optimization problem, which is usually a good thing.Comment: 16 pages, 8 figure
- …
