179 research outputs found

    Tracing Noble Gas Radionuclides in the Environment

    Full text link
    Trace analysis of radionuclides is an essential and versatile tool in modern science and technology. Due to their ideal geophysical and geochemical properties, long-lived noble gas radionuclides, in particular, 39Ar (t1/2 = 269 yr), 81Kr (t1/2 = 2.3x10^5 yr) and 85Kr (t1/2 = 10.8 yr), have long been recognized to have a wide range of important applications in Earth sciences. In recent years, significant progress has been made in the development of practical analytical methods, and has led to applications of these isotopes in the hydrosphere (tracing the flow of groundwater and ocean water). In this article, we introduce the applications of these isotopes and review three leading analytical methods: Low-Level Counting (LLC), Accelerator Mass Spectrometry (AMS) and Atom Trap Trace Analysis (ATTA)

    Hierarchical distributed model predictive control of interconnected microgrids

    Get PDF

    Influence of nuclear structure on sub-barrier hindrance in Ni+Ni fusion

    Get PDF
    Fusion-evaporation cross sections for 64^{64}Ni+64^{64}Ni have been measured down to the 10 nb level. For fusion between two open-shell nuclei, this is the first observation of a maximum in the SS-factor, which signals a strong sub-barrier hindrance. A comparison with the 58^{58}Ni+58^{58}Ni, 58^{58}Ni+60^{60}Ni, and 58^{58}Ni+64^{64}Ni systems indicates a strong dependence of the energy where the hindrance occurs on the stiffness of the interacting nuclei.Comment: Submitted to Phys. Rev. Lett. 4 pages, 3 figure

    Stellar 36,38^{36,38}Ar(n,γ)37,39(n,\gamma)^{37,39}Ar reactions and their effect on light neutron-rich nuclide synthesis

    Full text link
    The 36^{36}Ar(n,γ)37(n,\gamma)^{37}Ar (t1/2t_{1/2} = 35 d) and 38^{38}Ar(n,γ)39(n,\gamma)^{39}Ar (269 y) reactions were studied for the first time with a quasi-Maxwellian (kT47kT \sim 47 keV) neutron flux for Maxwellian Average Cross Section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the 37^{37}Ar/36^{36}Ar and 39^{39}Ar/38^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The 37^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of 36^{36}Ar and 38^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) mb and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron capture cross sections of 36,38^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak ss-process. The new production cross sections have implications also for the use of 37^{37}Ar and 39^{39}Ar as environmental tracers in the atmosphere and hydrosphere.Comment: 18 pages + Supp. Mat. (13 pages) Accepted for publication in Phys. Rev. Let

    Multi-layer coating development for XEUS

    Get PDF
    Graded depth multi-layer coatings have the potential to optimise the performance of X-ray reflective surfaces for improved energy response. A study of deposition techniques on silicon substrates representative of the XEUS High Performance Pore Optics (HPO) technology has been carried out. Measurements at synchrotron radiation facilities have been used to confirm the excellent performance improvements achievable with Mo/Si and W/Si multilayers. Future activities that will be necessary to implement such coatings in the HPO assembly sequence are highlighted. Further coating developments that may allow an optimisation of the XEUS effective area in light of potential changes to science requirements and telescope configurations are also identified. Finally an initial measurement of effects of radiation damage within the multilayers is reported

    Hindrance of Heavy-ion Fusion at Extreme Sub-Barrier Energies in Open-shell Colliding Systems

    Full text link
    The excitation function for the fusion-evaporation reaction 64Ni+100Mo has been measured down to a cross-section of ~5 nb. Extensive coupled-channels calculations have been performed, which cannot reproduce the steep fall-off of the excitation function at extreme sub-barrier energies. Thus, this system exhibits a hindrance for fusion, a phenomenon that has been discovered only recently. In the S-factor representation introduced to quantify the hindrance, a maximum is observed at E_s=120.6 MeV, which corresponds to 90% of the reference energy E_s^ref, a value expected from systematics of closed-shell systems. A systematic analysis of Ni-induced fusion reactions leading to compound nuclei with mass A=100-200 is presented in order to explore a possible dependence of the fusion hindrance on nuclear structure.Comment: 10 pages, 9 figures, Submitted to Phys. Rev.
    corecore