61 research outputs found

    Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    Get PDF
    General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. A B S T R A C T Leg crossing increases arterial pressure and combats symptomatic orthostatic hypotension in patients with sympathetic failure. This study compared the central and cerebrovascular effects of leg crossing in patients with sympathetic failure and healthy controls. We addressed the relationship between MCA V mean (middle cerebral artery blood velocity; using transcranial Doppler ultrasound), frontal lobe oxygenation [O 2 Hb (oxyhaemoglobin)] and MAP (mean arterial pressure), CO (cardiac output) and TPR (total peripheral resistance) in six patients (aged 37-67 years; three women) and age-and gender-matched controls during leg crossing. In the patients, leg crossing increased MAP from 58 (42-79) In the control subjects, CO increased 11 % (P < 0.05) with no change in TPR. By contrast, in the patients, CO increased 9 % (P < 0.05), but also TPR increased by 13 % (P < 0.05). In conclusion, leg crossing improves cerebral perfusion and oxygenation both in patients with sympathetic failure and in healthy subjects. However, in healthy subjects, cerebral perfusion and oxygenation were improved by a rise in CO without significant changes in TPR or MAP, whereas in patients with sympathetic failure, cerebral perfusion and oxygenation were improved through a rise in MAP due to increments in both CO and TPR

    Central and cerebrovascular effects of leg crossing in humans with sympathetic failure

    Get PDF
    A B S T R A C T Leg crossing increases arterial pressure and combats symptomatic orthostatic hypotension in patients with sympathetic failure. This study compared the central and cerebrovascular effects of leg crossing in patients with sympathetic failure and healthy controls. We addressed the relationship between MCA V mean (middle cerebral artery blood velocity; using transcranial Doppler ultrasound), frontal lobe oxygenation [O 2 Hb (oxyhaemoglobin)] and MAP (mean arterial pressure), CO (cardiac output) and TPR (total peripheral resistance) in six patients (aged 37-67 years; three women) and age-and gender-matched controls during leg crossing. In the patients, leg crossing increased MAP from 58 (42-79) to 72 (52-89) compared with 84 (70-95) to 90 (74-94) mmHg in the controls. MCA V mean increased from 55 (38-77) to 63 (45-80) and from 56 (46-77) to 64 (46-80) cm/s respectively (P < 0.05), with a larger rise in O 2 Hb [1.12 (0.52-3.27)] in the patients compared with the controls [0.83 (− 0.11 to 2.04) μmol/l]. In the control subjects, CO increased 11 % (P < 0.05) with no change in TPR. By contrast, in the patients, CO increased 9 % (P < 0.05), but also TPR increased by 13 % (P < 0.05). In conclusion, leg crossing improves cerebral perfusion and oxygenation both in patients with sympathetic failure and in healthy subjects. However, in healthy subjects, cerebral perfusion and oxygenation were improved by a rise in CO without significant changes in TPR or MAP, whereas in patients with sympathetic failure, cerebral perfusion and oxygenation were improved through a rise in MAP due to increments in both CO and TPR

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    The effect of cognitive fatigue on prefrontal cortex correlates of neuromuscular fatigue in older women

    Get PDF
    BACKGROUND: As the population of adults aged 65 and above is rapidly growing, it is crucial to identify physical and cognitive limitations pertaining to daily living. Cognitive fatigue has shown to adversely impact neuromuscular function in younger adults, however its impact on neuromuscular fatigue, and associated brain function changes, in older adults is not well understood. The aim of the study was to examine the impact of cognitive fatigue on neuromuscular fatigue and associated prefrontal cortex (PFC) activation patterns in older women. METHODS: Eleven older (75.82 (7.4) years) females attended two sessions and performed intermittent handgrip exercises at 30 % maximum voluntary contraction (MVC) until voluntary exhaustion after a 60-min control (watching documentary) and 60-min cognitive fatigue (performing Stroop Color Word and 1-Back tests) condition. Dependent measures included endurance time, strength loss, PFC activity (measured using fNIRS), force fluctuations, muscle activity, cardiovascular responses, and perceived discomfort. RESULTS: Participants perceived greater cognitive fatigue after the 60-min cognitive fatigue condition when compared to the control condition. While neuromuscular fatigue outcomes (i.e., endurance time, strength loss, perceived discomfort), force fluctuations, and muscle activity were similar across both the control and cognitive fatigue conditions, greater decrements in PFC activity during neuromuscular fatigue development after the cognitive fatigue condition were observed when compared to the control condition. CONCLUSION: Despite similar neuromuscular outcomes, cognitive fatigue was associated with blunted PFC activation during the handgrip fatiguing exercise that may be indicative of neural adaptation with aging in an effort to maintain motor performance. Examining the relationship between cognitive fatigue and neuromuscular output by imaging other motor-related brain regions are needed to provide a better understanding of age-related compensatory adaptations to perform daily tasks that involve some levels of cognitive demand and physical exercise, especially when older adults experience them sequentially

    Effects of acetazolamide and furosemide on ventilation and cerebral blood volume in normocapnic and hypercapnic patients with COPD.

    No full text
    STUDY OBJECTIVES: Effects of chronic metabolic alkalosis and acidosis and their relation to central chemoregulation may differ between normocapnic and chronic hypercapnic patients with COPD. The relationship between responses of inspired ventilation (VI), mouth occlusion pressure (P(0.1)), and cerebral blood volume (CBV), to short-term changes in arterial PCO(2) was measured. PATIENTS AND METHODS: Seventeen patients with chronic hypercapnia and COPD (PaCO(2) > 6.0 kPa) and 16 normocapnic patients with COPD (PaCO(2) 1 kPa) was induced by administering adequate amounts of carbon dioxide in the inspired air. CBV was measured using near-infrared spectroscopy. RESULTS: Compared with baseline metabolic condition, chronic metabolic acidosis and alkalosis did not change ventilatory (Delta VI/Delta PaCO(2)) and cerebrovascular (Delta CBV/Delta PaCO(2)) reactivity. Base excess (BE) decreased by 6.8 +/- 1.1 mEq/L and 6.9 +/- 1.6 mEq/L, respectively, in the normocapnic and chronic hypercapnic COPD groups during metabolic acidosis, resulting in a not-quite-significant leftward shift of both the ventilatory and cerebrovascular carbon dioxide response curve. BE increased by 2.3 +/- 1.2 mEq/L and 1.2 +/- 1.3 mEq/L, respectively, during chronic metabolic alkalosis in both COPD groups, without concomitant shift. Poor correlations between ventilatory and cerebrovascular carbon dioxide responsiveness (Delta CBV/Delta PaCO(2) and Delta VI/Delta PaCO(2), Delta CBV/Delta PaCO(2) and Delta P(0.1)/Delta PaCO(2), respectively) were found irrespective of baseline, respiratory condition, and induced metabolic state. CONCLUSIONS: Normocapnic and chronic hypercapnic COPD patients have the same ventilatory and cerebrovascular carbon dioxide responsiveness irrespective of induced metabolic state

    Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle

    No full text
    Mesure de la consommation d'oxygène locale et de la circulation sanguine par spectroscopie infrarouge chez 26 sujets effectuant un exercice de préhension isométrique. Comparaison avec la méthode de Fick et la pléthysmographi
    • …
    corecore