146 research outputs found
Design of InAs/GaSb superlattice infrared barrier detectors
Design of InAs/GaSb type-II superlattice (T2SL) infrared barrier detectors is theoretically investigated. Each part of the barrier structures is studied in order to achieve optimal device operation at 150 K and 77 K, in the midwave and longwave infrared domain, respectively. Whatever the spectral domain, nBp structure with a p-type absorbing zone and an n-type contact layer is found to be the most favourable detector architecture allowing a reduction of the dark-current associated with generation-recombination processes. The nBp structures are then compared to pin photodiodes. The MWIR nBp detector with 5 μm cut-off wavelength can operate up to 120 K, resulting in an improvement of 20 K on the operating temperature compared to the pin device. The dark-current density of the LWIR nBp device at 77 K is expected to be as low as 3.5 × 10−4 A/cm2 at 50 mV reverse bias, more than one decade lower than the usual T2SL photodiode. This result, for a device having cut-off wavelength at 12 μm, is at the state of the art compared to the well-known MCT ‘rule 07’
Self-consistent calculations of the energy and tunable emission spectra of doping superlattices
Based on the developed method of self-consistent calculations the results of description of tunable optical spectra versus
temperature and excitation level for the GaSb doping superlattices of different design are presented. Account of the
appearing tails of the density of states allows describing the long-wavelength edges and shape transformation in the
spectra of absorption, gain, and luminescence and peculiarities in the optical transitions characteristics. Possible laser
diode structures with n-i-p-i crystals in the active region are suggested including ordinary and δ-doped superlattices.
Effects of tunable lasing are examined and ways for control of the radiation wavelength are discussed
Shape-independent scaling of excitonic confinement in realistic quantum wires
The scaling of exciton binding energy in semiconductor quantum wires is
investigated theoretically through a non-variational, fully three-dimensional
approach for a wide set of realistic state-of-the-art structures. We find that
in the strong confinement limit the same potential-to-kinetic energy ratio
holds for quite different wire cross-sections and compositions. As a
consequence, a universal (shape- and composition-independent) parameter can be
identified that governs the scaling of the binding energy with size. Previous
indications that the shape of the wire cross-section may have important effects
on exciton binding are discussed in the light of the present results.Comment: To appear in Phys. Rev. Lett. (12 pages + 2 figures in postscript
Midwave infrared InAs/GaSb superlattice photodiode with a dopant-free p–n junction
Midwave infrared (MWIR) InAs/GaSb superlattice (SL) photodiode with a dopant-free p–n junction was fabricated by molecular beam epitaxy on GaSb substrate. Depending on the thickness ratio between InAs and GaSb layers in the SL period, the residual background carriers of this adjustable material can be either n-type or p-type. Using this flexibility in residual doping of the SL material, the p–n junction of the device is made with different non-intentionally doped (nid) SL structures. The SL photodiode processed shows a cut-off wavelength at 4.65 μm at 77 K, residual carrier concentration equal to 1.75 × 1015 cm−3, dark current density as low as 2.8 × 10−8 A/cm2 at 50 mV reverse bias and R0A product as high as 2 × 106 Ω cm2. The results obtained demonstrate the possibility to fabricate a SL pin photodiode without intentional doping the pn junction
Radiometric and noise characteristics of InAs-rich T2SL MWIR pin photodiodes
We present a full characterization of the radiometric performances of a type-II InAs/GaSb superlattice pin photodiode operating in the mid-wavelength infrared domain. We first focused our attention on quantum efficiency, responsivity and angular response measurements: quantum efficiency reaches 23% at λ = 2.1 µm for 1 µm thick structure. Noise under illumination measurements are also reported: noise is limited by the Schottky contribution for reverse bias voltage smaller than 1.2 V. The specific detectivity, estimated for 2p field-of-view and 333 K background temperature, was determined equal to 2.29 x 10^10 Jones for -0,8 V bias voltage and 77 K operating temperature
Thermal ionization of excitons in V-shaped quantum wires
The exciton-to-free-carrier transition in GaAs and In_xGa_{1-x}As V-shaped quantum wires is revealed by means of temperature-dependent magnetoluminescence experiments. The experimental results are in excellent agreement with the diamagnetic shift obtained from a solution of the full two-dimensional Schrödinger equation for electrons and holes including magnetic-field and excitonic effects. In the GaAs wires, the exciton-to-free-carrier transition is found to occur at temperature consistent with the exciton binding energies. In the In_xGa_{1-x}As wires the diamagnetic shift of the luminescence is found to be free-carrier-like, independent of temperature, due to the weakening of the exciton binding energy induced by the internal piezoelectric field
Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals
Lattice statistical mechanics, often provides a natural (holonomic) framework
to perform singularity analysis with several complex variables that would, in a
general mathematical framework, be too complex, or could not be defined.
Considering several Picard-Fuchs systems of two-variables "above" Calabi-Yau
ODEs, associated with double hypergeometric series, we show that holonomic
functions are actually a good framework for actually finding the singular
manifolds. We, then, analyse the singular algebraic varieties of the n-fold
integrals , corresponding to the decomposition of the magnetic
susceptibility of the anisotropic square Ising model. We revisit a set of
Nickelian singularities that turns out to be a two-parameter family of elliptic
curves. We then find a first set of non-Nickelian singularities for and , that also turns out to be rational or ellipic
curves. We underline the fact that these singular curves depend on the
anisotropy of the Ising model. We address, from a birational viewpoint, the
emergence of families of elliptic curves, and of Calabi-Yau manifolds on such
problems. We discuss the accumulation of these singular curves for the
non-holonomic anisotropic full susceptibility.Comment: 36 page
Radiometric characterization of type-II InAs/GaSb superlattice (t2sl) midwave infrared photodetectors and focal plane arrays
In recent years, Type-II InAs/GaSb superlattice (T2SL) has emerged as a new material technology suitable for high performance infrared (IR) detectors operating from Near InfraRed (NIR, 2-3μm) to Very Long Wavelength InfraRed (LWIR, λ > 15μm) wavelength domains. To compare their performances with well-established IR technologies such as MCT, InSb or QWIP cooled detectors, specific electrical and radiometric characterizations are needed: dark current, spectral response, quantum efficiency, temporal and spatial noises, stability… In this paper, we first present quantum efficiency measurements performed on T2SL MWIR (3-5μm) photodiodes and on one focal plane array (320x256 pixels with 30μm pitch, realized in the scope of a french collaboration ). Different T2SL structures (InAs-rich versus GaSb-rich) with the same cutoff wavelength (λc= 5μm at 80K) were studied. Results are analysed in term of carrier diffusion length in order to define the optimum thickness and type of doping of the absorbing zone. We then focus on the stability over time of a commercial T2SL FPA (320x256 pixels with 30μm pitch), measuring the commonly used residual fixed pattern noise (RFPN) figure of merit. Results are excellent, with a very stable behaviour over more than 3 weeks, and less than 10 flickering pixels, possibly giving access to long-term stability of IR absolute calibration
- …