1,180 research outputs found

    Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion

    No full text
    Fact-centric information needs are rarely one-shot; users typically ask follow-up questions to explore a topic. In such a conversational setting, the user's inputs are often incomplete, with entities or predicates left out, and ungrammatical phrases. This poses a huge challenge to question answering (QA) systems that typically rely on cues in full-fledged interrogative sentences. As a solution, we develop CONVEX: an unsupervised method that can answer incomplete questions over a knowledge graph (KG) by maintaining conversation context using entities and predicates seen so far and automatically inferring missing or ambiguous pieces for follow-up questions. The core of our method is a graph exploration algorithm that judiciously expands a frontier to find candidate answers for the current question. To evaluate CONVEX, we release ConvQuestions, a crowdsourced benchmark with 11,200 distinct conversations from five different domains. We show that CONVEX: (i) adds conversational support to any stand-alone QA system, and (ii) outperforms state-of-the-art baselines and question completion strategies

    Conversational Question Answering on Heterogeneous Sources

    Get PDF

    Efficient Contextualization using Top-k Operators for Question Answering over Knowledge Graphs

    Get PDF
    Answering complex questions over knowledge bases (KB-QA) faces huge input data with billions of facts, involving millions of entities and thousands of predicates. For efficiency, QA systems first reduce the answer search space by identifying a set of facts that is likely to contain all answers and relevant cues. The most common technique or doing this is to apply named entity disambiguation (NED) systems to the question, and retrieve KB facts for the disambiguated entities. This work presents CLOCQ, an efficient method that prunes irrelevant parts of the search space using KB-aware signals. CLOCQ uses a top-k query processor over score-ordered lists of KB items that combine signals about lexical matching, relevance to the question, coherence among candidate items, and connectivity in the KB graph. Experiments with two recent QA benchmarks for complex questions demonstrate the superiority of CLOCQ over state-of-the-art baselines with respect to answer presence, size of the search space, and runtimes

    Beyond {NED}: {F}ast and Effective Search Space Reduction for Complex Question Answering over Knowledge Bases

    Get PDF

    Conversational Question Answering on Heterogeneous Sources

    Get PDF
    Conversational question answering (ConvQA) tackles sequential informationneeds where contexts in follow-up questions are left implicit. Current ConvQAsystems operate over homogeneous sources of information: either a knowledgebase (KB), or a text corpus, or a collection of tables. This paper addressesthe novel issue of jointly tapping into all of these together, this wayboosting answer coverage and confidence. We present CONVINSE, an end-to-endpipeline for ConvQA over heterogeneous sources, operating in three stages: i)learning an explicit structured representation of an incoming question and itsconversational context, ii) harnessing this frame-like representation touniformly capture relevant evidences from KB, text, and tables, and iii)running a fusion-in-decoder model to generate the answer. We construct andrelease the first benchmark, ConvMix, for ConvQA over heterogeneous sources,comprising 3000 real-user conversations with 16000 questions, along with entityannotations, completed question utterances, and question paraphrases.Experiments demonstrate the viability and advantages of our method, compared tostate-of-the-art baselines.<br

    Bragg Polaritons: Strong Coupling and Amplification in an Unfolded Microcavity

    Full text link
    Periodic incorporation of quantum wells inside a one--dimensional Bragg structure is shown to enhance coherent coupling of excitons to the electromagnetic Bloch waves. We demonstrate strong coupling of quantum well excitons to photonic crystal Bragg modes at the edge of the photonic bandgap, which gives rise to mixed Bragg polariton eigenstates. The resulting Bragg polariton branches are in good agreement with the theory and allow demonstration of Bragg polariton parametric amplification.Comment: 4 pages, 4 figure

    Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities

    Get PDF
    Using two-dimensional spectroscopy, we resolve multi-polariton coherences in quantum wells embedded inside a semiconductor microcavity and elucidate how multi-exciton correlations mediate polariton nonlinear dynamics. We find that polariton correlation strengths depend on spectral overlap with the biexciton resonance and that up to at least four polaritons can be correlated, a higher-order correlation than observed to date among excitons in bare quantum wells. The high-order correlations can be attributed to coupling through the cavity mode, although the role of high-order Coulomb correlations cannot be excluded

    Inflationary and dark energy regimes in 2+1 dimensions

    Full text link
    In this work we investigate the behavior of three-dimensional (3D) cosmological models. The simulation of inflationary and dark-energy-dominated eras are among the possible results in these 3D formulations; taking as starting point the results obtained by Cornish and Frankel. Motivated by those results, we investigate, first, the inflationary case where we consider a two-constituent cosmological fluid: the scalar field represents the hypothetical inflaton which is in gravitational interaction with a matter/radiation contribution. For the description of an old universe, it is possible to simulate its evolution starting with a matter dominated universe that faces a decelerated/accelerated transition due to the presence of the additional constituent (simulated by the scalar field or ruled by an exotic equation of state) that plays the role of dark energy. We obtain, through numerical analysis, the evolution in time of the scale factor, the acceleration, the energy densities, and the hydrostatic pressure of the constituents. The alternative scalar cosmology proposed by Cornish and Frankel is also under investigation in this work. In this case an inflationary model can be constructed when another non-polytropic equation of state (the van der Waals equation) is used to simulate the behavior of an early 3D universe.Comment: Latex file, plus 9 figures. To appear in General Relativity and Gravitatio

    Decay of metastable phases in a model for the catalytic oxidation of CO

    Full text link
    We study by kinetic Monte Carlo simulations the dynamic behavior of a Ziff-Gulari-Barshad model with CO desorption for the reaction CO + O →\to CO2_2 on a catalytic surface. Finite-size scaling analysis of the fluctuations and the fourth-order order-parameter cumulant show that below a critical CO desorption rate, the model exhibits a nonequilibrium first-order phase transition between low and high CO coverage phases. We calculate several points on the coexistence curve. We also measure the metastable lifetimes associated with the transition from the low CO coverage phase to the high CO coverage phase, and {\it vice versa}. Our results indicate that the transition process follows a mechanism very similar to the decay of metastable phases associated with {\it equilibrium} first-order phase transitions and can be described by the classic Kolmogorov-Johnson-Mehl-Avrami theory of phase transformation by nucleation and growth. In the present case, the desorption parameter plays the role of temperature, and the distance to the coexistence curve plays the role of an external field or supersaturation. We identify two distinct regimes, depending on whether the system is far from or close to the coexistence curve, in which the statistical properties and the system-size dependence of the lifetimes are different, corresponding to multidroplet or single-droplet decay, respectively. The crossover between the two regimes approaches the coexistence curve logarithmically with system size, analogous to the behavior of the crossover between multidroplet and single-droplet metastable decay near an equilibrium first-order phase transition.Comment: 27 pages, 22 figures, accepted by Physical Review

    Transition from accelerated to decelerated regimes in JT and CGHS cosmologies

    Full text link
    In this work we discuss the possibility of positive-acceleration regimes, and their transition to decelerated regimes, in two-dimensional (2D) cosmological models. We use general relativity and the thermodynamics in a 2D space-time, where the gas is seen as the sources of the gravitational field. An early-Universe model is analyzed where the state equation of van der Waals is used, replacing the usual barotropic equation. We show that this substitution permits the simulation of a period of inflation, followed by a negative-acceleration era. The dynamical behavior of the system follows from the solution of the Jackiw-Teitelboim equations (JT equations) and the energy-momentum conservation laws. In a second stage we focus the Callan-Giddings-Harvey-Strominger model (CGHS model); here the transition from the inflationary period to the decelerated period is also present between the solutions, although this result depend strongly on the initial conditions used for the dilaton field. The temporal evolution of the cosmic scale function, its acceleration, the energy density and the hydrostatic pressure are the physical quantities obtained in through the analysis.Comment: To appear in Europhysics Letter
    • …
    corecore