333 research outputs found

    Transport and magnetic properties in YBaCo2O5.45: Focus on the high-temperature transition

    Full text link
    The electronic transport properties and the magnetic susceptibility were measured in detail in YBaCo2O5.45YBaCo_2O_{5.45}. Close to the so-called metal-insulator transition, strong effects of resistance relaxation, a clear thermal hysteresis and a sudden increase of the resistance noise are observed. This is likely due to the first order character of the transition and to the underlying phases coexistence. Despite these out of equilibrium features, a positive and linear magneto-resistance is also observed, possibly linked to the heterogeneity of the state. From a magnetic point of view, the paramagnetic to ordered magnetic state transition is observed using non linear susceptibilty. This transition shows the characteristics of a continuous transition, and time dependent effects can be linked with the dynamics of magnetic domains in presence of disorder. Thus, when focusing on the order of the transitions, the electronic one and the magnetic one can not be directly associated.Comment: accepted for publication in PR

    Correlation and R2 analysis of radicle emergence test to predict seed vigour and field emergence in blackgram (Vigna mungo L.) seed lots

    Get PDF
    Blackgram (Vigna mungo L.) is one of the major pulse crops grown throughout India.  Prediction of seed vigour and field emergence of seed before sowing is important for assured yield. A standard germination test is time-consuming and does not always show the seed lot potential performance, especially if field conditions are not optimal. There is need of advanced technology, which can give a precise result in a short period. The experiment was conducted to correlate the radicle emergence test with seed vigour parameters to predict seed vigour and planting value of 10 varying vigour lots (L1, L2, L3, L4 - high vigour lots; L5, L6, L7 - medium vigour lots; L8, L9, L10 - low vigour lots) of blackgram var. VBN 6. The study showed that all the seed vigour parameters of the blackgram were more highly correlated with the percentage of radicle emergence with 2 mm length than with 1 mm length. The correlation analysis results showed that the radicle emergence test with 2 mm radicle length at 28 hours had a highly significant negative correlation with EC (electrical conductivity) of seed leachate (-0.974**), followed by MJGT (mean just germination time) (-0.967**) and MGT (mean germination time) (-0.933**). However, it was positively correlated with field emergence (0.972**), germination (0.952**) and dehydrogenase enzyme activity (0.928**). The maximum R2 value of 0.923 was recorded in the 28-hour counting of radicle emergence with a length of 2 mm compared with the 26-hour counting of radicle emergence with a length of 1 mm (0.913). The study concluded that counting 2 mm radicle emergence at the 28th hour could be used to quickly evaluate seed vigour in field emergence in blackgram seed lots

    Radicle emergence test as a quick vigour test to predict field emergence performance in rice (Oryza sativa L.) seed lots

    Get PDF
    An experiment was made to standardize the radicle emergence test to predict the field emergence performance in ten different seed lots [L1 to L4: high vigour lots (> 90 % germination), L5 to L7: medium vigour lots (80-90 % germination) and L8 to L10: low vigour lots (< 80 % germination)] of rice cv. CO 51. The results showed that the significant differences are observed in physiological and biochemical parameters in different seed lots. The seed vigour was classified into three groups viz., high, medium and low vigour based on the relationship between mean germination time and field emergence. When the Mean Germination Time (MGT) was < 34 hours, the field emergence was > 85 per cent, which was considered as high vigour; when the MGT was 34-35 hours, the field emergence was 80-85 per cent, that was considered as medium vigour; when the MGT was > 35 hours, the field emergence was < 80 per cent, that was considered as low vigour. The radicle emergence test (2mm radicle length) was highly negatively correlated with mean germination time (-0.930**) followed by mean just germination time (-0.852**) and electrical conductivity of seed leachate (-0.827**) and it was positively correlated with field emergence (0.894**) followed by germination (0.878**) and dehydrogenase activity (0.864**). The R2 values between seed vigour parameters and radicle emergence test were significantly higher in 2mm length of radicle emergence when compared with 1mm length of radicle emergence. Finally, the study concluded that 36 hour MGT with the attainment of 2mm radicle emergence percentage could be used as a quick method to assess rice seed lots' quality by the seed analysts and seed industry

    Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI

    Get PDF
    BACKGROUND: A number of gene therapy applications would benefit from vectors capable of expressing multiple genes. In this study we explored the feasibility and efficiency of expressing two or three transgenes in HIV-1 based lentiviral vector. Bicistronic and tricistronic self-inactivating lentiviral vectors were constructed employing the internal ribosomal entry site (IRES) sequence of encephalomyocarditis virus (EMCV) and/or foot-and-mouth disease virus (FMDV) cleavage factor 2A. We employed enhanced green fluorescent protein (eGFP), O(6)-methylguanine-DNA-methyltransferase (MGMT), and homeobox transcription factor HOXB4 as model genes and their expression was detected by appropriate methods including fluorescence microscopy, flow cytometry, immunocytochemistry, biochemical assay, and western blotting. RESULTS: All the multigene vectors produced high titer virus and were able to simultaneously express two or three transgenes in transduced cells. However, the level of expression of individual transgenes varied depending on: the transgene itself; its position within the construct; the total number of transgenes expressed; the strategy used for multigene expression and the average copy number of pro-viral insertions. Notably, at limiting MOI, the expression of eGFP in a bicistronic vector based on 2A was ~4 times greater than that of an IRES based vector. CONCLUSION: The small and efficient 2A sequence can be used alone or in combination with an IRES for the construction of multicistronic lentiviral vectors which can express encoded transgenes at functionally relevant levels in cells containing an average of one pro-viral insert

    Impact of different levels of iron on mitigation of iron chlorosis in varagu CO 3 (Paspalum scrobiculatum. L)

    Get PDF
    Iron (Fe) deficiency is a major nutritional disorder in crops growing in calcareous soils. Varagu crop are more susceptible to (Fe) deficiency in the early stage of growth and the deficiency is exhibited as chlorosis developing interveinally in the new leaves.  The objective of the present study was to see the impact of different levels iron on mitigation of chlorosis in varagu, Paspalum scrobiculatum under calcareous soil and to investigate the influence of soil and foliar application of iron on growth, physiological and improvement of yield potential of varagu under calcareous soil condition. The varagu variety CO3 taken for this study The treatments comprised T1, NPK (44:22:0 kg ha-1) + 12.5 t  FYM/ha,T2, NPK (44:22:30 kg ha-1) +12.5 t FYM/ha, T3, T1 + Soil application of FeSO4   (25 kg ha-1), T4, T2 + Soil application of FeSO4 (25 kg ha-1), T5, T1 + Soil application of FeSO4 (50 kg ha-1), T6, T2 + Soil application of FeSO4 (50 kg ha-1), T7, T3 + Foliar spray of 0.5% FeSO4, T8, T4 + Foliar spray of 0.5% FeSO4, T9,T5 + Foliar spray of 0.5% FeSO4, T10,  T6 + Foliar spray of 0.5% FeSO4. During experimentation, morphological characteristics, growth attributes, physiological and biochemical components and biomass traits determined the mitigation of iron chlorosis. The iron deficiency in varagu was effectively controlled by T10, soil treatment 50 kg ha-1 FeSO4 and foliar spray of 0.5% FeSO4 applied on the 30th and 50th days after sowing through maintaining highest growth parameter values, maximum catalase and peroxidase activity and maintaining more chlorophyll content

    Aquaporins and their implications on seeds: A brief review

    Get PDF
    Aquaporins (AQPs) are water channel proteins. They play a key role in maintaining water balance and homeostasis in cells under stress conditions in living organisms. AQPs are pore forming transmembrane proteins that facilitate water movement and various small neutral solutes across cellular membranes. Aquaporin expression and transport functions are modulated by various phytohormones mediated signalling in plants. Transcriptome analysis revealed the role of aquaporins in regulating hydraulic conductance in plant roots and leaves. Different AQPs found in the seed system have individual functions that are more time and tissue specific, ultimately helping in the seed imbibition process to complete seed germination. Seed specific TIP3s aquaporin helps to maintain seed longevity under expressional control of ABI3 during seed maturation and heat shock proteins and late embryogenic abundant proteins. Under stress circumstances, the major significance of aquaporin expression in seeds is to maintain water influx and efflux rates, as well as protein modification, post translational alterations, nutritional acquisition and allocation, subcellular trafficking and CO2 transport. The present review mainly focused on aquaporin structure, classification, role and functional activity during solute transport, reproductive organs development, plant growth development, abiotic stress response and also various roles in seeds such as seed biology, seed development and maturation, seed dormancy, seed germination and longevity

    Volatile organic compound analysis as advanced technology to detect seed quality in groundnut

    Get PDF
    An experiment was conducted to profiling the volatile organic compounds emitted from groundnut seeds during storage and also to assess the volatiles emission level during seed deterioration. Volatile organic compounds profiling of stored groundnut seeds was done through GC-MS at monthly intervals. The results showed that several volatile compounds were released from stored groundnut seeds and all the compounds are falling into eight major groups viz., alcohols, aldehydes, acids, esters, alkanes, alkenes, ketones and ethers. The study clearly demonstrated the influence of volatile organic compounds emission level on physiological and biochemical properties during storage. There was a significant decrease in physiological and biochemical quality attributes noted due to an increase in the strength of volatiles released during ageing. When the release of total volatile strength reached more than 50%, a significant reduction in physiological attributes such as germination, root and shoot length, dry matter production and vigour index were observed. With respect to biochemical properties, a significant increase in electrical conductivity of seed leachate, lipid peroxidation and lipoxygenase activity, and a decrease in dehydrogenase, catalase and peroxidase activities were observed. However, the highest reduction in all these properties was recorded when the total volatile strength reached 92.72%. The study concluded that the volatiles released during seed deterioration could be considered the signature components for detecting the seed quality during storage

    Water Management in the Noyyal River Basin A Situation Analysis

    Get PDF
    The Noyyal sub-basin, which is 3510 sq km in area, is part of the Cauvery basin that lies in the state of Tamil Nadu. It is a rapidly urbanizing sub-basin that includes the Class I cities of Coimbatore and Tiruppur as well as 84 smaller urban settlements. Water issues in this basin have been the focus of much public debate and action over the last two decades. Most of the debate, triggered by farmer agitations and court cases, has focused on the question of water pollution; water scarcity and sustainability issues have received relatively little attention. Recent bans on industrial effluent discharge into the Noyyal, as well as changes in water supply infrastructure, watershed development activities, urban demand and agricultural water use have dramatically altered the future of the Noyyal River and merit follow-up studies. The purpose of this situation analysis is to summarize the current state of knowledge regarding water resources management in the Noyyal sub-basin and identify critical knowledge gaps to inform water-related research in the basin. It is hoped that such an analysis will help those studying or working on water issues in the Noyyal, and also provide useful insights for other urbanizing basins

    Assessment of rice (Co 51) seed ageing through volatile organic compound analysis using Headspace-Solid Phase Micro Extraction/ Gas Chromatography-Mass Spectrometry (HS-SPME/GCMS)

    Get PDF
    Seed ageing is an inevitable process that reduces seed quality during storage. When seeds deteriorate as a result of the lipid peroxidation process, it leads to produce toxic volatile organic compounds. These volatiles served as an indicator for the viability of stored seeds. With this background, the study was conducted to profile the volatile organic compounds emitted from rice seeds during storage. Volatile profiling of stored rice var. Co 51 seeds was done through Headspace-Solid phase microextraction/ Gas chromatography-mass spectrometry (HS-SPME/GCMS). The study clearly demonstrated that the significant decrease in physiological and biochemical quality attributes was noted due to an increase in the strength of volatiles released during ageing. When the release of total volatile strength reached more than 40%, a significant reduction in physiological attributes such as germination, root and shoot length, dry matter production and vigour index were observed. With respect to biochemical properties, a significant increase in electrical conductivity of seed leachate, lipid peroxidation and lipoxygenase activity, and decrease in dehydrogenase, catalase and peroxidase activities were observed. However, the highest reduction in all these properties were recorded when the total volatile strength reached to 54.90%. Finally, the study concluded that, among all the volatiles, 1-hexanol, 1-butanol, ethanol, hexanal, acetic acid, hexanoic acid and methyl ester were the most closely associated volatiles with seed deterioration. It indicates that these components could be considered the signature components for assessing the seed quality in rice during storage.
    • …
    corecore