5,308 research outputs found

    SPARTA: A Graphical User Interface for Malicious Mobile Code Fingerprint-ing.

    Get PDF
    This thesis introduces and describes SPARTA (for Stochastic Profiling Application for the Rendering of Trees and Automata), a graphical user interface used as a front end to a collection of tools written in C that collectively convert a log of registry system calls performed by an application into binary descriptions of PSTs (for Probabilistic Suffix Trees) and PSAs (for Probabilistic Suffix Automata), which are models used to represent application behavior on Windows-based systems. SPARTA works by rendering these binary descriptions into graphical form, showcasing a variety of features intended to make the user interaction with PSTs and PSAs informative and insightful. The ultimate goal of SPARTA is to aid in the process of profiling applications based on the system calls they make, using characteristics from PSTs and PSAs that are more easily noticeable in their graphical form to define “normal” behavior for Windows applications. With knowledge of normal behavior, these very same models can be used to measure deviations that might ultimately result in the destructive actions of malicious mobile code, enabling the user to halt or quarantine them before they take place

    Stem cells in skin wound healing: are we there yet?

    Get PDF
    Significance: Cutaneous wound healing is a serious problem worldwide that affects patients with various wound types, resulting from burns, traumatic injuries, and diabetes. Despite the wide range of clinically available skin substitutes and the different therapeutic alternatives, delayed healing and scarring are often observed. Recent Advances: Stem cells have arisen as powerful tools to improve skin wound healing, due to features such as effective secretome, self-renewal, low immunogenicity, and differentiation capacity. They represent potentially readily available biological material that can particularly target distinct wound-healing phases. In this context, mesenchymal stem cells have been shown to promote cell migration, angiogenesis, and a possible regenerative rather than fibrotic microenvironment at the wound site, mainly through paracrine signaling with the surrounding cells/tissues. Critical Issues: Despite the current insights, there are still major hurdles to be overcome to achieve effective therapeutic effects. Limited engraftment and survival at the wound site are still major concerns, and alternative approaches to maximize stem cell potential are a major demand. Future Directions: This review emphasizes two main strategies that have been explored in this context. These comprise the exploration of hypoxic conditions to modulate stem cell secretome, and the use of adipose tissue stromal vascular fraction as a source of multiple cells, including stem cells and factors requiring minimal manipulation. Nonetheless, the attainment of these approaches to target successfully skin regeneration will be only evident after a significant number of in vivo works in relevant pre-clinical models.L3–TECT—NORTE-01-0124-FEDER-000020’’ cofinanced by North Portugal Regional Operational Program (ON.2—O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF), and Portuguese Foundation for Science and Technology (FCT

    Effects of Age, Gender, Obesity, and Diabetes on the Efficacy and Safety of the Selective A(2A) Agonist Regadenoson Versus Adenosine in Myocardial Perfusion Imaging Integrated ADVANCE-MPI Trial Results

    Get PDF
    ObjectivesTo compare the effects of age, gender, body mass index, and diabetes on the safety and efficacy of regadenoson stress myocardial perfusion imaging, and to assess the noninferiority of regadenoson to adenosine for the detection of reversible myocardial perfusion defects.BackgroundPrevious reports have shown that a fixed unit bolus of regadenoson is safe and noninferior to adenosine for the detection of reversible perfusion defects by radionuclide imaging.MethodsUsing a database of 2,015 patients, we evaluated the effects of age, gender, body mass index, and diabetes on the safety and efficacy of regadenoson compared to adenosine.ResultsFor detection of ischemia relative to adenosine, noninferiority was demonstrated for all patients (agreement rate difference 0%, 95% CI −6.2% to +6.8%). The average agreement rate between adenosine-adenosine and adenosine-regadenoson were 0.62 ± 0.03 and 0.63 ± 0.02. Detection of ischemia was also comparable in specific subgroups. Agreement was less for both agents in women versus men with moderate and large areas of ischemia. Compared to adenosine, regadenoson had a lower combined symptom score and less chest pain, flushing, and throat, neck, or jaw pain, but more headache and gastrointestinal discomfort. This was true in nearly all subgroups. Regadenoson patients reported feeling more comfortable (1.7 ± .02 vs. 1.9 ± 0.03, p < 0.001). Based on the overall tolerability score, women felt less comfortable than men with both stress agents. Image quality was rated good or excellent in 92% for both agents.ConclusionsRegadenoson can be safely administered as a fixed unit bolus and is as efficacious as adenosine in detecting ischemia regardless of age, gender, body mass index, and diabetes. Regadenoson is better tolerated overall and across various subgroups

    Skin Tissue Models

    Get PDF
    Skin Tissue Models provides a translational link for biomedical researchers on the interdisciplinary approaches to skin regeneration. As the skin is the largest organ in the body, engineered substitutes have critical medical application to patients with disease and injury - from burn wounds and surgical scars, to vitiligo, psoriasis and even plastic surgery. This volume offers readers preliminary description of the normal structure and function of mammalian skin, exposure to clinical problems and disease, coverage of potential therapeutic molecules and testing, skin substitutes, models as study platforms of skin biology and emerging technologies. The editors have created a table of contents which frames the relevance of skin tissue models for researchers as platforms to study skin biology and therapeutic approaches for different skin diseases, for clinicians as tissue substitutes, and for cosmetic and pharmaceutical industries as alternative test substrates that can replace animal models. Offers descriptions of the normal structure/function of mammalian skin, exposure to clinical problems, and more Presents coverage of skin diseases (cancer, genodermatoses, vitiligo and psoriasis) that extends to clinical requirements and skin diseases in vitro models Addresses legal requirements and ethical concerns in drugs and cosmetics in vitro testing Edited and authored by internationally renowned group of researchers, presenting the broadest coverage possible. © 2018 Elsevier Inc. All rights reserved.(undefined)info:eu-repo/semantics/publishedVersio

    A review on locomotion mode recognition and prediction when using active orthoses and exoskeletons

    Get PDF
    Understanding how to seamlessly adapt the assistance of lower-limb wearable assistive devices (active orthosis (AOs) and exoskeletons) to human locomotion modes (LMs) is challenging. Several algorithms and sensors have been explored to recognize and predict the users’ LMs. Nevertheless, it is not yet clear which are the most used and effective sensor and classifier configurations in AOs/exoskeletons and how these devices’ control is adapted according to the decoded LMs. To explore these aspects, we performed a systematic review by electronic search in Scopus and Web of Science databases, including published studies from 1 January 2010 to 31 August 2022. Sixteen studies were included and scored with 84.7 ± 8.7% quality. Decoding focused on level-ground walking along with ascent/descent stairs tasks performed by healthy subjects. Time-domain raw data from inertial measurement unit sensors were the most used data. Different classifiers were employed considering the LMs to decode (accuracy above 90% for all tasks). Five studies have adapted the assistance of AOs/exoskeletons attending to the decoded LM, in which only one study predicted the new LM before its occurrence. Future research is encouraged to develop decoding tools considering data from people with lower-limb impairments walking at self-selected speeds while performing daily LMs with AOs/exoskeletons.This work was funded in part by the Fundação para a Ciência e Tecnologia (FCT) with the Reference Scholarship under grant 2020.05711.BD, under the Stimulus of Scientific Employment with the grant 2020.03393.CEECIND, and in part by the FEDER Funds through the COMPETE 2020— Programa Operacional Competitividade e Internacionalização (POCI) and P2020 with the Reference Project SmartOs Grant POCI-01-0247-FEDER-039868, and by FCT national funds, under the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020

    Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution

    Get PDF
    We demonstrate the first example of silicon nanowire array photocathodes coupled with hollow spheres of the emerging earth-abundant cobalt phosphide catalysts. Compared to bare silicon nanowire arrays, the hybrid electrodes exhibit significantly improved photoelectrochemical performance toward the solar-driven H2 evolution reaction.L. F. Liu acknowledges the financial support by the FCT Investigator grant (IF/01595/2014)

    Posterior Arthroscopic Subtalar Arthrodesis: Clinical and Radiologic Review of 19 Cases

    Get PDF
    Arthroscopic subtalar arthrodesis has recently gained popularity in the treatment of primary subtalar or post-traumatic arthritis, coalition, or inflammatory diseases with subtalar arthritis. The present study reports the clinical and radiologic results of 19 patients (19 feet) who underwent posterior arthroscopic subtalar arthrodesis using 2 posterior portals. A total of 19 posterior arthroscopic subtalar arthrodeses (minimum follow-up of 24 months) performed without a bone graft and with 2 parallel screws were prospectively evaluated. The fusion rate was 94% (mean time to fusion 9.8 weeks). Modified American Orthopaedic Foot and Ankle Society ankle-hindfoot scale score (maximum 94 points) improved significantly from 43 to 80 points and the visual analog scale for pain score improved from 7.6 to 1.2. The 12-item short-form physical and mental scores at the last follow-up point were 52.5 and 56.4, respectively. One (5.3%) patient underwent open repeat fusion for nonunion, 2 (10.5%) patients required a second procedure for implant removal, and 1 (5.3%) experienced reversible neuropraxia. In conclusion, posterior arthroscopic subtalar arthrodesis is a safe technique with a good union rate and a small number of complications in patients with no or very little hindfoot deformity.info:eu-repo/semantics/publishedVersio

    Piezoresistor sensor fabrication by direct laser writing on hydrogenated amorphous silicon

    Get PDF
    In this paper we report on the 532 nm Nd:YAG laser-induced crystallization of 10 nm thick boron-doped hydrogenated amorphous silicon thin films deposited on flexible polyimide and on rigid oxidized silicon wafers by hot-wire chemical vapor deposition. The dark conductivity increased from ~10-7 -1cm-1, in the as-deposited films, to ~10 and 50 -1cm-1 after laser irradiation, on rigid and flexible substrates, respectively. Depending on type of substrate, laser power and fluence, a Raman crystalline fraction between 55 and 90% was measured in HWCVD films, which was higher than observed in rf-PECVD films (35 - 55%). Crystallite size remained small in all cases, in the range 6-8 nm. Due to a very high conductivity contrast (>7 orders of magnitude) between amorphous and crystallized regions, it was possible to define conductive paths in the a-Si:H matrix, by mounting the sample on a X-Y software-controlled movable stage under the laser beam, with no need for the usual lithography steps. The resistors scribed by direct laser writing had piezoresistive properties, with positive gauge factor ~1. The details of the laser interaction process with the Si film were revealed by scanning electron microscopy imaging.(undefined

    Study on excimer laser irradiation for controlled dehydrogenation and crystallization of boron doped hydrogenated amorphous/nanocrystalline silicon multilayers

    Get PDF
    We report on the excimer laser annealing (ELA) induced temperature gradients, allowing controlled crystal-lization and dehydrogenation of boron-doped a-Si:H/nc-Si:H multilayers. Depth of the dehydrogenation and crystallization process has been studied numerically and experimentally, showing that temperatures below the monohydride decomposition can be used and that significant changes of the doping profile can be avoided. Calculation of temperature profiles has been achieved through numerical modeling of the heat conduction differential equation. Increase in the amount of nano-crystals, but not in their size, has been demonstrated by Raman spectroscopy. Effective dehydrogenation and shape of the boron profile have been studied by time of flight secondary ion mass spectroscopy. The relatively low temperature threshold for dehydrogenation, below the monohydride decomposition temperature, has been attributed to both, the large hydrogen content of the original films and the partial crystallization during the ELA process. The results of this study show that UV-laser irradiation is an effective tool to improve crystallinity and dopant activation in p+-nc-Si:H films without damaging the substrate.Fundação para a Ciência e Tecnologia (FCT)CRUP Spanish–Portuguese bilateral agreement HP2006- 0122Spanish national and regional research contracts: MAT-2000-1050, MAT-2003-04908MAT-2011-24077, PGIDIT03-04908, PGIDT-01PX130301PN, XUGA- Infra 93, XUGA-Infra 94-58, SB93-A0742819D and INFRA 99-PR 405a-46
    corecore