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Abstract: Understanding how to seamlessly adapt the assistance of lower-limb wearable assistive
devices (active orthosis (AOs) and exoskeletons) to human locomotion modes (LMs) is challenging.
Several algorithms and sensors have been explored to recognize and predict the users’ LMs. Never-
theless, it is not yet clear which are the most used and effective sensor and classifier configurations
in AOs/exoskeletons and how these devices’ control is adapted according to the decoded LMs. To
explore these aspects, we performed a systematic review by electronic search in Scopus and Web of
Science databases, including published studies from 1 January 2010 to 31 August 2022. Sixteen studies
were included and scored with 84.7 ± 8.7% quality. Decoding focused on level-ground walking along
with ascent/descent stairs tasks performed by healthy subjects. Time-domain raw data from inertial
measurement unit sensors were the most used data. Different classifiers were employed considering
the LMs to decode (accuracy above 90% for all tasks). Five studies have adapted the assistance of
AOs/exoskeletons attending to the decoded LM, in which only one study predicted the new LM
before its occurrence. Future research is encouraged to develop decoding tools considering data from
people with lower-limb impairments walking at self-selected speeds while performing daily LMs
with AOs/exoskeletons.

Keywords: gait rehabilitation; locomotion mode recognition and prediction; wearable assistive devices

1. Introduction

Humans can usually adjust their locomotion mode (LM) according to a variety of
conditions and terrains that they typically face. LMs are composed of static and dynamic
tasks. The static tasks correspond to the sitting (SIT) and standing (ST) tasks, while the
dynamic tasks are further divided into two more categories: continuous and discrete. The
continuous tasks correspond to the level-ground walking (LW), stair ascending (SA) and
descending (SD), and ramp ascending (RA) and descending (RD) tasks. On the other hand,
the discrete tasks consist of transitions between tasks. All these tasks can be recognized after
their occurrence or predicted before it. However, patients with lower-limb impairments
face challenges while performing these daily tasks [1].

Current challenges in personalized robotics-based assistance are related to recognizing
and predicting different LMs with a non-intrusive sensor setup to timely trigger the assis-
tance delivered by the wearable assistive devices. Despite recent advancements, most of the
current LM decoding tools integrated into wearable assistive devices (i) address a limited
number of daily LMs (are non-generic tools) [2,3]; (ii) present high recognition delays [4–7]
and low prediction times [6,8–10]; (iii) do not consider the effect of the walking speed
variation [6,8,11,12]; (iv) do not present clinical evidence [3,6,8,13]; and (v) do not adapt
the assistance to perform the intended motion [3,6–8,13]. It is of the utmost importance
that wearable assistive devices, such as AOs and exoskeletons, tackle these limitations
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by endowing algorithms capable of accurately and timely decoding of the user’s LMs to
provide personalized assistance [7,14].

Reviews already published provide an overview of the state of the art of wearable as-
sistive devices [1,14,15]. Yan et al. [15] focused on assistive control strategies for lower-limb
AOs and exoskeletons, stating the available devices are able to assist users with lower-limb
impairments and specifying their control strategies. Despite providing a valuable contri-
bution to the existing assistive devices, topics related to (i) the control strategies oriented
to the user’s needs and (ii) for which sensors and machine learning classifiers should be
employed to decode LM were not deeply explored. On the other hand, Novak et al. [14]
provide the strengths and weaknesses of using different sensors (electromyography (EMG),
electroencephalography (EEG), and mechanical sensors) and their fusion in several ap-
plications, such as LM decoding. However, this review [14] focuses on which sensors
can be applied to some applications, including AOs and exoskeletons, and it does not
address how to use the output of the LM decoding tools to control these wearable assistive
devices. Labarrière et al.’s [1] review is centered on the sensors and machine learning clas-
sifiers used to recognize and predict LMs when using AOs, exoskeletons, and prostheses.
Nonetheless, most of the studies presented in [1] were designed for assisted conditions
when using prostheses [16–20]. According to [11], the LM recognition performed when
using orthotic/exoskeleton systems is different from prostheses or conditions without a
lower-limb assistive device (non-assisted conditions [21–27]) due to the distinct positions
that the sensors can take in these situations. Additionally, the human–robot interaction
is also different between orthotic/exoskeleton systems and prostheses, mainly when the
motion activity of the lower limb is limited [28].

This review addresses LM decoding tools developed and applied exclusively in or-
thotic systems and/or exoskeletons. Thus, this review advances the studies [1,14,15] by
analyzing (i) the sensors and their positioning during LMs applications when using AOs
and/or exoskeletons; (ii) the machine learning classifiers applied for LM decoding; and
(iii) the control architecture adopted by the wearable assistive devices when recognizing
and/or predicting LMs, providing an overview of the current ability of these devices to
assist according to the users’ motion intentions. Four research questions (RQs) related
to LM decoding under robotics assistance were identified in this literature review: (RQ1)
Which are the typical LMs and the target population addressed?; (RQ2) Which type of wear-
able sensors and features are commonly used for LM recognition and prediction?; (RQ3)
Which set of algorithms should be employed to recognize/predict different LMs attending
to accuracy and time-effectiveness?; and (RQ4) how to adapt the exoskeleton/orthosis
assistance according to the decoded user’s LM.

2. Methods
2.1. Search Strategy

The literature search was conducted from 1 December 2020 to 31 August 2022 in the
Scopus and Web of Science databases using the following keywords: “locomotion mode
recognition”; “locomotion mode prediction”; “locomotion mode transition”; “locomotion
transition” or “locomotion prediction”; “motion intention decoding”; “motion intention”
and “orthosis”; “locomotion mode recognition” and “orthosis”; “locomotion mode recog-
nition” and “exoskeleton”; “motion intention recognition” and “orthosis”; and “motion
intention recognition” and “exoskeleton”. Variations of “intention” to “intent” were also
considered. This search was limited to titles, keywords, and abstracts.

2.2. Eligibility Criteria

Manuscripts were evaluated based on the following inclusion criteria: (i) the study
was published in English; (ii) the study is after 2010; (iii) the study focuses on lower-limb
LM decoding in real time; (iv) the LM decoding algorithm only relies on data acquired
from wearable sensors; and (v) only wearable assistive devices, such as exoskeletons and
AOs, should be included. All the studies where the participants were not wearing any
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wearable assistive device (exoskeletons or AOs) or using prosthetic systems were excluded.
Reviews were also excluded from the analysis.

2.3. Data Extraction

The information extracted from each study focused on five main topics, namely: (i) the
addressed motion tasks and walking speed; (ii) the sensors used, the features extracted,
and the windows employed to extract features; (iii) the classifiers and their performance
in terms of accuracy and decoding delay; (iv) the control type of the assistive device
considering the decoded LM; and (v) the number and condition (healthy or pathology) of
the participants involved for developing the decoding tool.

2.4. Quality Assessment

The quality of the included studies was evaluated based on a modified QualSyst
Tool presented in [29]. Twelve criteria were employed, in which criteria 1 to 4, 7, 11,
and 12 are the same as stated in [29]. Criteria 8, 9, and 10 of [29] correspond to criteria
6, 8, and 9 of this manuscript, respectively. Criteria 5 and 6 of [29] were removed and
replaced by criteria 5 and 10 to include items essential to the LM recognition/prediction
and correspondent assistance by wearable assistive devices, such as the sensors used, data
collected, and control strategies developed. The authors approved the proposed criteria.

The twelve criteria are stated in Appendix A and detailed in Table A1. The first two
criteria evaluated if the objective, research questions, and study design were adequately
described and appropriate. Criterion 3 analyzed if the participants’ demographic charac-
teristics and the inclusion and exclusion criteria were clearly stated. Criterion 4 evaluated
if the experimental protocol of each study was presented with enough rigor to enable
reproducibility, while criterion 5 analyzed if the sensors used and the data collected were
clearly reported. Criteria 6 and 7 checked if the studies provided enough information
about the input features and windows length, respectively. Criteria 8 and 9 confirmed that
the classification algorithms and evaluation methods were clearly presented. Criterion 10
evaluated if the control strategy of the wearable assistive device used in each study was
mentioned and explained. Criterion 11 analyzed if the study results were given, stating
the mean and standard deviation values, and criterion 12 checked if the conclusions were
drawn based on all results, including positive and negative results.

Each one of the included papers was evaluated with a score ranging from 0 to 2.
A score of 0 implies an inexistence of information, whereas a score of 1 and 2 represent
partial and full information, respectively. As the tool includes 12 criteria, the minimum and
maximum scores that each study can achieve are 0 and 24, respectively. These scores were
converted on a scale from 0 to 100%.

3. Results
3.1. Studies Selection

This literature search resulted in 119 and 136 studies from Scopus and Web of Science
databases, respectively. Thirteen papers were manually identified in the references section
of other studies and accounted for this analysis, leading to 268 identified papers. After
removing the duplicate papers, 129 studies remained for screening, of which 79 papers were
removed based on the titles and abstracts. A total of 60 full-text articles were assessed for
eligibility, and according to the inclusion and exclusion criteria, 18 studies were included.
Figure 1 depicts the PRISMA flow chart discretizing this selection process.

3.2. Quality of the Included Studies

Table 1 presents the quality assessment analysis of the included studies computed
based on the modified QualSyst Tool. The mean, maximum, and minimum quality scores
obtained were 84.7 ± 8.7%, 95.8%, and 62.5%, respectively.
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Figure 1. PRISMA flow chart for LM recognition and prediction.

Table 1. Quality assessment of the included studies.

Study
Criterion

Score (%)
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

[7] 2 2 1 1 2 2 1 2 2 2 2 2 87.5
[13] 2 2 2 2 2 2 0 2 2 2 2 2 91.7
[6] 2 2 1 1 2 2 0 2 2 2 2 2 83.3
[10] 1 2 1 1 2 2 2 2 2 2 2 2 87.5
[30] 1 2 0 1 2 1 0 2 2 0 2 2 62.5
[8] 1 2 2 1 2 2 2 2 2 2 2 2 91.7
[31] 1 2 1 1 2 2 0 2 1 2 1 2 70.8
[3] 2 2 1 1 2 2 0 2 1 2 2 2 79.2
[32] 2 2 1 1 2 2 2 2 2 2 2 2 91.7
[11] 2 2 1 2 2 2 2 2 1 2 1 2 87.5
[12] 2 2 2 2 2 2 2 2 1 2 2 2 95.8
[4] 2 2 1 1 2 2 0 2 2 2 2 2 83.3
[9] 2 2 1 1 2 2 1 2 2 2 2 2 87.5
[33] 1 2 2 2 2 2 0 2 2 2 1 2 83.3
[5] 2 2 2 1 2 2 0 2 2 2 2 2 87.5
[2] 2 2 1 1 2 2 0 2 2 2 1 0 70.8
[34] 2 2 2 2 2 2 2 2 2 1 2 2 95.8
[35] 2 2 1 2 2 2 2 2 0 2 2 2 87.5

Mean Score ± standard deviation 84.7 ± 8.7

3.3. Information Extracted from the Included Studies

Table 2 presents the information extracted from each study, attending to the addressed
locomotion tasks, speed, sensors used, features extracted, and analysis windows employed.
Information regarding the classifiers and their performance in terms of accuracy and
decoding delay is also provided, along with the control type adopted by the wearable
assistive device considering the decoded LM. The last column presents the number and
status (healthy or pathological) of the participants involved in the algorithms’ development
and validation.
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Table 2. LM decoding algorithms available in the literature.

Study R/P 1 Locomotion Tasks Speed Sensors
(Location) Features Windows Classifier Performance

(ACC 2, Delay) Control Type Participants
(Status)

Parri et al. [7] R

Static Tasks: SIT 3,
ST;
Dynamic Tasks:
Continuous (LW, SA,
and SD) and
Transitions (LW→ST,
ST→LW, SIT→ST,
ST→SIT, LW→SA,
LW→SD, SA→LW,
SD→LW)

Slow, natural,
and fast

-Encoder (hip
exoskeleton)
-Pressure insoles
(feet)

-Hip joint angles
and Center of
Pressure (CoP)
at specific gait
events

200 ms
-Static and
Discrete Tasks:
Finite State
Machine (FSM);

-ACC > 97.4%;
-Dynamic
Motion: Delay
about one step;
-Transitions:
Delay between
15.2% and 63.8%

-Zero-torque
mode;
-Assistive mode
without
considering the
motion intention

6 (healthy)

Kim et al. [13] R
Dynamic Tasks:
Continuous (LW, SA,
SD, RA, and RD)

Fixed speed
(4 km/h)

-Encoder (hip
and knee
exoskeleton);
-5 IMU
(exoskeleton
back, thigh, and
foot);
-Load cells
(exoskeleton
insole)

-Vertical foot
position
-Thigh, shank,
and foot
inclination

NI 4 Decision Tree
(DT)

-Average
ACC = 99.1%;
-Delay between
0.0% and 5.13%

Zero-torque
mode 8 (healthy)

Yuan et al. [6] Both

Static Tasks: SIT, ST;
Dynamic Tasks:
Continuous (LW, SA,
SD) and Transitions
(SIT→ST, ST→SIT,
ST→LW, LW→ST,
ST→SA, SA→ST,
ST→SD, SD→ST,
LW→SA, SA→LW,
LW→SD, SD→LW)

Natural

-Encoder (hip
exoskeleton);
-Pressure insoles
(feet)

-Hip joint angles
and Center of
Pressure (CoP)
at specific gait
events

NI

-Static Tasks and
Transitions:
FSM;
-Continuous
Tasks:
Event-based
fuzzy-logic
method;

-ACC > 90.1%;
-Delay between
−30.9% and
100%

Zero-torque
mode 3 (healthy)

Zhou et al. [10] Both

Dynamic Tasks:
Continuous (LW, SA,
SD) and Transitions
(LW→SA, SA→LW,
LW→SD, SD→LW)

NI

2 IMU
(exoskeleton
thigh and
shank)

Maximum
(MAX),
minimum
(MIN), mean,
standard
deviation, and
root mean
square (RMS) of
the thigh
inclination
angles, angular
velocities, and
angular
accelerations

150 ms with an
increment of

10 ms

Support Vector
Machine (SVM)

-ACC between
93.0% and
96.2%;
-Delay between
−40.0 ms and
185 ms;

Zero-torque
mode 3 (healthy)
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Table 2. Cont.

Study R/P 1 Locomotion Tasks Speed Sensors
(Location) Features Windows Classifier Performance

(ACC 2, Delay) Control Type Participants
(Status)

Hua et al. [30] R

Dynamic Tasks:
Continuous (LW, SA,
SD, RA, RD) and
Transitions
(LW→SA, SA→LW,
LW→SD, SD→LW,
LW→RA, RA→LW,
LW→RD, RD→LW)

NI

-Encoder
(exoskeleton);
-1 IMU
(exoskeleton
back);
-Ground
Reaction Force
(GRF) sensors
(exoskeleton);

NI NI

-DT;
-Discriminant
Analysis (DA);
-SVM;
-k-Nearest
neighbor (KNN);
-Ensemble
Method (EM);
-Convolutional
Neural Network
(CNN);
-Stacked
Autoencoder-
based Deep
Neural Network

-ACC = 99.7%;
-Delay between
11.8% and
17.4%;

NI NI

Long et al. [8] Both

Dynamic Tasks:
Continuous (LW, SA,
SD, RA, RD) and
Transitions
(LW→SA, SA→LW,
LW→SD, SD→LW,
LW→RA, RA→LW,
LW→RD, RD→LW)

Natural

-2 Attitude and
Heading
Reference
System (AHRS)
sensors (shank
and foot);
-6 GRF sensors
(pressure
insoles/feet);

Wavelet
coefficients from
(i) GRF during
the swing phase;
and (ii) thigh
and foot
inclination
angles

200 ms with an
increment of

10 ms
SVM

-ACC between
97.3% and
99.5%;
-Delay between
−10.4% and
48%

Zero-torque
mode 3 (healthy)

Islam et al. [31] R
Dynamic Tasks:
Continuous (LW, SA,
SD, RA, RD)

NI

-1 IMU (orthosis
foot);
-Force Sensor
Resistor (FSR)
(orthosis insole);

-Vertical foot
position
-Foot orientation
-FSR-based foot
contact
information

NI

Multilayer
Feedforward
Neural Network
(MFNN)

-ACC > 98.3%;
-Delay between
16% and 28%

Zero-torque
mode 5 (healthy)

Jang et al. [3] R

Static Tasks: ST;
Dynamic Tasks:
Continuous (LW,
SA, SD)

Natural

-Potentiometers
(hip
exoskeleton);
-1 IMU
(exoskeleton
back);

-Hip joint angles
-Vertical
acceleration-
based foot
contact

NI FSM

-ACC between
95% and 99%;
-Delay of
one-step delay

Zero-torque
mode 3 (healthy)

Zhu et al. [32] R

Dynamic Tasks:
Continuous (LW, SA,
SD, RA, RD) and
Transitions
(LW→SA, SA→LW,
LW→SD, SD→LW,
LW→RA, RA→LW,
LW→RD, RD→LW)

Natural 4 IMU (thigh
and shank)

Hip and knee
joint angle,
angular velocity,
and angular
acceleration

100 ms with an
increment of

50 ms
CNN

-ACC between
96.6 and 99.0%;
-Delay between
3.96% and 24.0%

Assistive mode
considering the
motion intention

7 (healthy)
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Table 2. Cont.

Study R/P 1 Locomotion Tasks Speed Sensors
(Location) Features Windows Classifier Performance

(ACC 2, Delay) Control Type Participants
(Status)

Gong et al. [12] R

Static Tasks: ST;
Dynamic Tasks:
Continuous (LW, SA,
SD, RA, RD)

Fixed speed
(2.7 km/h) 2 IMU (thigh)

MAX, MIN,
mean, standard
deviation, and
RMS of the
thigh inclination
angles, angular
velocities, and
angular
accelerations

250 ms with an
increment of

10 ms
MFNN

-Average
ACC = 97.8%
-Delay between
50 and 300 ms

Zero-torque
mode 1 (healthy)

Gong et al. [11] R

Static Tasks: ST;
Dynamic Tasks:
Continuous (LW, SA,
SD, RA, RD)

Fixed speed
(2.7 km/h) 2 IMU (thigh)

MAX, MIN,
mean, standard
deviation, and
RMS of the
thigh inclination
angles, angular
velocities, and
angular
accelerations

250 ms with an
increment of

10 ms
MFNN

-Zero-torque
mode: Average
ACC = 98.4%;
-Assistive mode:
ACC between
97.6% and
98.4%;

-Zero-torque
mode;
-Assistive mode
without
considering the
motion
intention;

3 (healthy)

Li et al. [4] R
Dynamic Tasks:
Continuous (LW, SA,
SD, RA, RD)

NI
-1 IMU (orthosis
foot)
-FSRs (orthosis
insole)

-Orthosis
orientation
-Orthosis
position

NI FSM

-ACC between
97.2% and
99.5%;
-Delay of
one-step delay

Assistive mode
considering the
motion intention

5 (healthy)

Liu et al. [9] Both

Static Tasks: ST;
Dynamic Tasks:
Continuous (LW, SA,
SD, RA, RD) and
Transitions
(LW→SA, SA→LW,
LW→SD, SD→LW,
LW→RA, RA→LW,
LW→RD, RD→LW)

NI

2 IMU
(exoskeleton
thigh and
shank)

MAX, MIN,
mean, standard
deviation, and
RMS of the
thigh and shank
inclination
angles, angular
velocities, and
angular
accelerations

15 samples

-Static Tasks and
Transitions:
FSM;
-Continuous
Tasks: SVM;

-Healthy
participants:
average ACC
between 97.6%
and 98.3% and
delay between
−78.5 ms and
38.7 ms;
-Stroke
participant:
average
ACC = 97.4%;

Assistive mode
considering the
motion intention

-5 (healthy);
-1 (stroke);

Fernandes et al. [33] R Dynamic Task:
Continuous (LW)

Fixed speed
(1 km/h and

1.5 km/h)

Electromyography
(EMG) (Vastus
Lateralis, Vastus
Medialis,
Semitendinosus,
and Semimem-
branosus)

EMG data from
Vastus Lateralis,
Vastus Medialis,
Semitendinosus,
and Semimem-
branosus

NI Proportional
Gain Method

-NRMSE = 12%;
-Delay = 22 ms;

Assistive mode
considering the
motion intention

2 (healthy)



Sensors 2022, 22, 7109 8 of 23

Table 2. Cont.

Study R/P 1 Locomotion Tasks Speed Sensors
(Location) Features Windows Classifier Performance

(ACC 2, Delay) Control Type Participants
(Status)

Wang et al. [5] R

Dynamic Tasks:
Continuous (LW, SA,
SD) and Transitions
(LW→SA, SA→LW,
LW→SD, SD→LW)

Natural 2 IMU (thigh
and shank)

-MAX and MIN
thigh and shank
angles;
-MAX and MIN
knee angles;

NI FSM

-ACC between
98.1% and
98.3%;
-Delay between
41.1% and
58.2%;

Zero-torque
mode 18 (healthy)

Kimura et al. [2] R
Dynamic Tasks:
Transitions (SIT→ST,
ST→SIT)

NI
Potentiometer
(hip and knee
exoskeleton)

-Hip and knee
joint angle
-Upper body
pitch angle

NI SVM
-F-Measure
between 0.882
and 0.997

Zero-torque
mode 6 (healthy)

Du et al. [34] R

Static Tasks: ST;
Dynamic Tasks:
Continuous (LW, SA,
SD) and Transitions
(ST→LW, LW→ST)

Natural 2 IMU (thigh) Pitch and roll
angles

100 ms with an
increment of

10 ms

-Static Tasks and
Transitions:
FSM;
-Continuous
Tasks:
Event-based
fuzzy-logic
method;

-ACC of 91.9%
between static
tasks and ACC
higher than
89.0% between
dynamic tasks;
-Delay = 554.4 ms

Zero-torque and
Assistive mode
considering
motion intention

3 (healthy)

Wang et al. [35] R

Static Tasks: ST and
SIT;
Dynamic Tasks:
Continuous (LW, SA,
SD, RA, RD) and
Transitions between
Static Tasks

Natural

-6 IMU (thigh,
shank, and
shoes)
-4 Load cells
(insole)

NI
100 ms with an

increment of
10 ms

CNN
-ACC = 94.0%;
-Delay between
18.1 and 53.3 ms

Zero-torque
mode 9 (healthy)

1 R and P mean recognition and prediction, respectively, 2 ACC means accuracy, 3 Sitting (SIT), Standing (ST), Level-ground Walking (LW), Stair Ascending (SA) and Descending (SD),
Ramp Ascending (RA) and Descending (RD), 4 NI means Not Indicated. It was used when the information was not provided in the studies.
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3.3.1. Locomotion Modes and Speed

Based on Table 2, the most investigated LMs are dynamic tasks only [2,4,5,8,10,13,30–32]
(N = 11) and a combination between dynamic and static tasks [3,6,9,11,12,34,35] (N = 7).
Among the dynamic tasks, six studies [4,13,31,33–35] classified continuous dynamic tasks,
whereas only one study [2] focused on transitions. Thirteen studies [3,5–12,30,32,34,35]
explored continuous and discrete dynamic tasks together.

The ST task was the most investigated static LM [3,6,7,9,11,12,34,35] (N = 8), whereas
the SIT task was explored in three studies [6,7,35]. Three studies [6,7,35] considered the
identification of both ST and SIT tasks.

Concerning the dynamic LMs, the LW, SA, and SD tasks were the continuous dy-
namic tasks typically addressed, being explored in 17 studies [3–13,30–35], while the
RA and RD tasks were investigated together with the LW, SA, and SD tasks in nine
studies [4,8,11–13,30–32,35]. The LW-SA, SA-LW, LW-SD, and SD-LW transitions were ad-
dressed in eight studies [5–10,30,32], being the most investigated discrete dynamic tasks.
The LW-RA, RA-LW, LW-RD, and RD-LW tasks were explored in four studies [8,9,30,32],
the SIT-ST and ST-SIT in four studies [2,6,7,35], the ST-LW and LW-ST in two studies [6,7],
and the ST-SA and SA-ST in one study [6].

The LMs regarding the LW, SA, SD, RA, and RD tasks together and the transitions
between them were decoded in three studies [8,30,32]. Moreover, only two studies [6,34]
considered the walking initiation and termination motions. Finally, no study has explored
the ST-RA, RA-ST, ST-RD, and RD-ST transitions.

Only four studies predicted tasks before their occurrence, namely (i) the ST task
preceded by the SIT task and vice-versa [6]; (ii) the LW task preceded by the SA task
and vice-versa [8,9]; (iv) the LW task preceded by the SD task [8–10]; and (v) the SD task
preceded by the LW task [9]. However, no study was able to predict all the proposed LMs.

Ten studies [3,5–8,11–13,32,33] presented information regarding the walking speed
during the LW task, whereas only four studies presented its value (1.0 [33], 1.5 [33],
2.7 [11,12], and 4.0 km/h [13]). While in [13,33], the presented speed value was employed
during the LW tasks, in [11,12], the speed of 2.7 km/h was enforced during the LW, RA,
and RD tasks, using a treadmill. In the remaining eight studies, the participants walked
at self-selected speeds, but there was no information regarding the mean value of the
self-selected speed. Study [7] asked participants to walk at self-selected slow, natural, and
fast speeds.

3.3.2. Sensor Systems, Features, and Analysis Windows

Based on the information presented in Table 2, (i) one study only used physiological
sensors [33]; (ii) nine studies have only used kinematic sensors [2,3,5,9–12,30,34]; (iii) eight
studies have combined kinematic and kinetic sensors [4,6–8,13,30,31,35]; (iv) no study used
kinetic sensors exclusively; and (v) no studies combined these three sensors’ types.

A single study used an EMG system, acquiring signals from the vastus lateralis,
vastus medialis, semitendinosus, and semimembranosus muscles to map the user’s motion
intention [33].

Seventeen studies used kinematic sensors, namely (i) potentiometers [2,3] (N = 2)
and encoders [6,7,13,30] (N = 4) embedded in the joints of the wearable assistive device to
measure the joint angles and (ii) IMUs [3–5,9–13,30–32,34,35] (N = 13) and Attitude and
Heading Reference System (AHRS) [8] (N = 1) placed on both wearable assistive device and
participants’ lower limbs to measure the inclination angles, angular velocities, accelerations,
and positions of the segments. In addition, eight studies combined kinematic with kinetic
sensors, such as (i) encoders and pressure insoles [6,7] (N = 2); (ii) encoders, IMUs, and
load cells [13,35] (N = 2); (iii) IMUs and Force Sensing Resistors (FSRs) [4,31] (N = 2);
and (iv) encoders, IMUs, and specific Ground Reaction Force (GRF) sensors [30] (N = 1),
which are commonly embedded in the wearable assistive device. These kinetic sensors
measure the human–robot interaction, foot contact with the ground, the force resultant from
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that contact, and the center of pressure (CoP). Figure 2 represents all mentioned sensors
considering their positioning in the leg with and without assistance.
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In relation to the features that serve as input to the classification algorithms, two
types were found: (i) time-domain data [2–7,9–13,30–35] (N = 17) and (ii) frequency-
domain data [8] (N = 1). Of the 18 studies, 9 used an analysis window to compute the
features [5,7–12,34,35]. In these studies [5,7–12,34,35], the extracted time-domain features
were (i) the hip joint angles and CoP at the heel strike event [7]; (ii) maximum and min-
imum thigh, shank, and knee angles [5]; and (iii) maximum, minimum, mean, standard
deviation, and root mean square of the thigh and shank inclination angles, triaxial angular
velocities, and accelerations [9–12,34,35]. The time-frequency domain features considered
were the wavelet coefficients from the (i) GRF during the swing phase [8] and (ii) thigh
and foot inclination angles [8]. Seven studies defined a sliding window, characterized by a
window length (from 100 to 250 ms) and an increment (from 10 to 50 ms) [5,8,10–12,34,35].
Furthermore, two studies only specified the window length, using 150 ms in [9] and 200 ms
in [7]. All of the remaining studies [2–6,13,30,31] (N = 8) did not provide information about
analysis windows. Instead, they used raw temporal information extracted from sensors:
(i) hip, knee, and ankle joint angle depending on the assisted joint [2,3,6,32]; (ii) inclination
angles of the thigh, shank, and foot [4,13,31]; and (iii) vertical position and velocity of the
striking foot [3,13,31].

3.3.3. Classifiers

Ten different algorithms were applied, namely: event-based fuzzy-logic methods,
decision tree (DT), support vector machine (SVM), discriminant analysis (DA), k-nearest
neighbor (kNN), ensemble method (EM), convolutional neural network (CNN), stacked
autoencoder-based deep neural network, multilayer feedforward neural network (MFNN),
and finite state machine (FSM). Two algorithms were employed more times than others:
FSM [3–7,9,34] (N = 7) and SVM [2,8–10] (N = 4). The remaining classification algorithms
were used three times (MFNN [11,12,31], event-based fuzzy-logic methods [6,7,34], and
CNN [30,32,35]), twice (DT [13,30]), and once (DA [30], kNN [30], EM [30], and stacked
autoencoder-based deep neural network [30]).

Sixteen studies used the accuracy and the recognition delay to assess the performance
of the classifiers. From these 16 studies, all present accuracy values above 90%. In particular,
12 exhibited classification accuracies higher than 95% [3–5,7–9,11–13,30–32]. In general,
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concerning the recognition delay, the LMs were recognized between 3.96% and 100% of the
gait cycle of the new LM.

There were four studies able to predict some tasks before their occurrence [6,8–10].
In [6], the ST task preceded by the SIT task (and vice-versa) was predicted using a FSM with
a delay of −30.9% and −31.7%, respectively. No standard deviation was provided. The
negative sign means that the decoding was done before the LM occurrence, i.e., in the gait
cycle that precedes the one of the new LM. In [8], the SA task preceded by the LW tasks (and
vice-versa) was predicted using the SVM classifier with a recognition delay of−10.4 ± 1.2%
and −6.40 ± 0.8%, respectively. In [9], the SVM classifier predicted (i) the SA task preceded
by LW task in −5.4 ± 74.6 ms; and (ii) the SD preceded by LW task in −78.5 ± 25.0 ms
when the leading leg was the leg without the wearable assistive device. When the leading
leg was the paretic leg (with the wearable assistive device), the study was able to predict
the (i) SD task preceded by LW task in −1.8 ± 39.2 ms; (ii) LW task preceded by SD task in
−0.7 ± 58.7 ms; and (iii) LW task preceded by SA task in −46.7 ± 46.6 ms. In [10], the SD
task preceded by LW task was predicted 40.0 ± 107.53 ms before its occurrence, using the
SVM classifier.

Figure 3a–d shows an overview of the relationship between the average accuracy
obtained from decoding a specific LM and the used classifiers and sensors. Nonetheless, a
direct comparison regarding the accuracy of each study cannot be made since the protocol
and the classified LMs differ among the studies.
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Table 2 shows that the MFNN [31], FSM [4], and DT [13] classifiers were employed
to decode continuous dynamic tasks. The average accuracies are depicted in Figure 3a.
Depending on the sensors used and the LMs to decode, these classifiers appear to provide
a high capability of decoding continuous LMs. Moreover, the recognition delay for each
study was (i) between 16% and 28% [31]; (ii) of one-step delay [4]; and (iii) below 5.13% [13],
respectively (Table 2).

The MFNN [11,12], and FSM [3] were employed to decode static and continuous
dynamic tasks together. Similar accuracies were reported for MFNN and FSM algorithms
even using IMU sensors or combining IMUs with potentiometers (Figure 3b). Regarding
the recognition delay, no information was provided in [11]. A one-step delay and a delay
between 50 and 300 ms were reported in [3] and [12], respectively.

A greater variety of classifiers have been employed to decode continuous and dis-
crete dynamic tasks together, namely SVM [8–10], DA [30], DT [30], kNN [30], EM [30],
CNN [30,32], stacked autoencoder-based deep neural network [30], and FSM [5]. Based
on the average accuracies presented in Figure 3c, SVM, kNN, CNN, stacked autoencoder-
based deep neural network, and FSM seem to provide the highest performances. It is
noteworthy that SVM [8–10] and CNN [30,32] algorithms reported different classification
accuracies depending on the sensors employed. Moreover, these classifiers reported higher
classification accuracies when only IMU data were used as input.

Two classifiers were used to decode static, continuous, and discrete dynamic tasks
together, namely the FSM combined with the event-based fuzzy-logic method [6,7,34], the
FSM combined with SVM [9], and CNN [35]. In general, similar average accuracies were
reported for both algorithms, as presented in Figure 3d.

3.3.4. Control Type of the Wearable Assistive Device

LM decoding tools were developed under the assistive device action managed by
three control modes: (i) zero-torque mode [2,3,5–8,10–13,31,34,35] (N = 13); (ii) assistive
mode without considering the response of the LM recognition/prediction tools [11] (N = 1)
and (iii) assistive mode while considering the response of the LM recognition/prediction
tools to support the users according to their intent [4,7,9,32–34] (N = 6).

The zero-torque mode implies that the wearable assistive device is operating passively,
enabling it to be freely moved by the user. This mode is also known as the transparent
mode, in which constraints associated with the actuator’s frictions are reduced [9]. The
assistive mode without considering the LM recognition/prediction tools corresponded to
the employment of torque controls, in which the wearable assistive device is enforcing a
pattern to the user [12]. On the other hand, the assistive mode considering the LM recogni-
tion/prediction tools also enforces a pattern to the user but commonly takes advantage of
a three or two-level control architecture to assist the user according to the LM decoded [41].
The three-level control scheme is characterized by a (i) high-level or perception layer,
employing recognition algorithms to decode the user’s LMs; (ii) mid-level or conversion
layer that maps the user’s motion intention to the control algorithm to generate reference
trajectories according to the desired/intended motion; and (iii) the low-level or execution
layer, in which the control algorithm drives the wearable assistive device to perform the
desired motion [41]. In the two-level control scheme, there is a high and low level. While
the low level is the same as in the three-level control scheme, the high level corresponds to
the combination of the high and middle level of the three-level control scheme [7].

Six studies have adapted the assistance of the wearable assistive device attending to
the user’s decoded LM [4,7,9,32–34]. In [4,7,34], a two-level hierarchical control design
was followed. In [4], a constant torque of 10 N.m was provided by an ankle orthosis (low
level) when the SD task was recognized (high level). For that, FSRs sensors embedded
in the orthosis foot were used to detect the gait phase. Then, the LM was decoded, and
the constant torque was provided. The torque was delivered during (i) the first 50% of
the gait cycle to support the ankle joint motion when the leg without assistance is in the
swing phase and (ii) the last 20% of the gait cycle to guarantee that the foot is performing
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plantarflexion before touching the next stair step. In [7], a two-level hierarchical control
was designed to provide a phase-locked assistive torque (low-level) when a LM (among
the SIT, ST, LW, SA, and SD tasks and transitions between them) was recognized (high
level). Contrarily to [4], in [7], after recognizing the LW, SA, and SD tasks, a gait phase
estimation algorithm was employed to provide the phase-locked assistive torque most
suitable according to the gait phase of the decoded LM (Figure 4). The provided torque
was adopted from public databases with joint trajectories recorded during locomotion-
related activities [42–45]. Moreover, the torque patterns were modeled according to each
participant’s body mass. Similarly to [7], a predefined joint torque curve was adopted
according to the decoded LM in [34].
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In [9,32,33], a three-level hierarchical control architecture was followed. In [32], the
high level presented a gait phase estimation algorithm using IMU signals to segment
the input data into strides. Based on these strides, the LM was decoded. A parameter
optimal iterative learning control (POILC) method [46] was implemented in the middle
level. This method was designed for a soft lower-limb exoskeleton to provide hip and
knee assistance according to the tension of Bowden cables. The tension of these cables
was modeled according to the hip and knee joint moments when performing the LW, SA,
and SD tasks [47]. The low level was responsible for driving the exoskeleton according to
the tension of the Bowden cables. The high level developed in [9] was different from [32].
Firstly, the LM was distinguished between a static (ST) and a dynamic condition. Then,
in the case of a dynamic condition, the LM was classified (among LW, SA, and SD tasks),
followed by a gait phase estimation algorithm to distinguish the stance from the swing
phase. Three other subphases (heel-strike, heel-off, and toe-off) were identified during
the stance phase. In addition, the mid-level developed in [9] was hybrid. It used a zero-
torque mode during the ST task and during the swing phase of LW, SA, and SD tasks in
an attempt to reduce the constraints associated with the actuator’s frictions. According
to the authors [9], during the first and second subphases (from the heel-strike to heel-off
events and from heel-off to toe-off events, respectively) of the SA task, the knee should
perform the extension and flexion movements, respectively. Based on these assumptions,
the knee exoskeleton provided a closed-loop torque control to extend and flex the knee joint,
assisting the user during the first and the second subphases of the SA task. For the stance
phase of the LW and SD tasks, the muscles around the knee joint provide negative power to
help the knee move and avoid excessive knee flexion, supporting the human body. For this
reason, in [9], an open-loop damping control was adopted to provide resistance at the knee
joint to support the body and absorb the shock. In [33], contrary to the above-mentioned
studies [4,7,9,32], the high level did not present a gait-phase estimation algorithm. The mid-
level was responsible for traducing EMG signals to knee joint torques using a proportional
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gain method (EMG-based torque method) proposed by [48]. These estimated knee joint
torques acted as reference signals in the low level, being compared with the measured knee
joint torques to adapt the knee orthosis assistance.

3.3.5. Participants

The studies included at least 91 participants for developing and validating the LM
decoding tools from the 18 included studies. The maximum number of participants was
18 [5], the minimum was 1 [12], and the mode was 3 [3,6,8,10,11,34]. Moreover, from the
91 participants, 90 presented a healthy condition state, while only 1 pathological participant
(stroke patient) was considered [9].

4. Discussion

This literature review shows that several studies focused on developing LMs recogni-
tion and prediction tools for gait rehabilitation purposes driven by AOs and exoskeletons.
Apart from the general overview of the actual status, topics related to the studied LMs,
sensors, type of input data, analysis windows, classifiers, and their performance and the
control of the wearable assistive devices will be discussed to answer four raised RQs. In
the end, the limitations of the current technologies are summarized, and future directions
are proposed to tackle the identified challenges in this area.

4.1. Which Are the Typical LMs and the Target Population Addressed?

This review shows that LW, SA, and SD are the typical LMs addressed [3–13,30–32,34,35]
(N = 16), while the LW, SA, SD, RA, and RD tasks correspond to the second most addressed
tasks [4,8,11–13,30–32,35] (N = 9). These results are not following the findings of [1] since
the most representative decoded tasks were the LW, SA, SD, RA, and RD, whereas the LW,
SA, and SD were the second most explored tasks. This phenomenon may be associated with
the fact that most of the studies reported in [1] use prostheses, which may reveal a different
tendency compared to AOs and exoskeletons. The high prevalence of decoding dynamic
tasks is associated with using these robotic devices to increase the motor independence of
injured subjects in their daily lives. However, only three studies decoded the LW, SA, SD,
RA, and RD tasks together and transitions between them [8,30,32]. The walking initiation
and termination movements were only explored in [6,34]. Moreover, no studies decoded
the ST-RA, RA-ST, ST-RD, and RD-ST transitions. Consequently, no study decoded all
commonly daily performed LMs, including the LW, SA, SD, RA, RD, ST, and SIT tasks
and transitions between them under robotic assistance. These facts are in accordance
with findings from previous studies [21,23,24], in which the identification of transitions
between several tasks when using a wearable assistive device is discussed as one of the
main limitations of the current LM decoding tools.

Twelve studies [3,5–8,11–13,32–35] provided information about the gait speed, and in
eight studies [3,5–8,32,34,35], the participants walked at self-selected speeds (not controlling
it), and in four studies [11–13,33], the speed was fixed and controlled. These results follow
the ones reported in [1] since there were more studies in which the gait speed was self-
selected. Furthermore, according to [49], the average self-selected speed of neurologically
impaired patients is about 0.46 m/s (1.66 km/h). Considering this information and the
used gait speeds, only the study [33] seems to address the typical walking speeds of these
patients. There is evidence that waking speed affects the lower limb biomechanics [50,51].
Consequently, the LM decoding tools’ performance may be jeopardized if walking speeds
different from those used during the algorithms’ training process (commonly involving
healthy subjects walking at higher self-selected speeds than patients) are employed [52–54].
Thus, the applicability of the available solutions trained with healthy gait patterns to
pathological individuals may be compromised. Additionally, only one study from the
reviewed studies involved a stroke patient for tool development, which may be insufficient
to validate the application of the developed algorithms in this pathological population.
This assumption is in accordance with [7,14], stating that the application of LM decoding
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algorithms developed for healthy participants in pathological subjects may not properly
work since the biomechanics of pathological patients are different from healthy subjects.
The recommendations suggest including the target population during the algorithms’
development [14].

4.2. Which Type of Wearable Sensors and Features Are Commonly Used for LM Recognition
and Prediction?

Kinematic sensors are the most used for LM decoding. Among potentiometers, en-
coders, AHRS, and IMU sensors, these last ones correspond to the most used type of sensor,
as depicted in Figure 3a–d. Based on the considered literature, physiological sensors are the
sensor type less used for LM decoding. These results support the ones reported in [1,14,15].
Although EMG signals may allow recognizing the user’s motion intention faster due to
their anticipatory ability (about 100 ms before the muscle contraction [14]), EMG-based
approaches have been left behind since EMG sensing is prone to fade during long-term use
as a result of (i) movements between the skin and the electrodes; (ii) temperature variations;
and (iii) sweating [7,12,13,32,33,55,56]. These phenomena can cause an incorrect identifi-
cation of the user’s LM. Moreover, according to [14,15], the use of EMG signals to decode
LMs of pathological users (such as stroke patients) is prone to provide low accuracies due
to the muscular activities of pathological users, which may vary across time and during the
execution of the LMs as a result of fatigue. For this reason, the target population should be
included during the algorithms’ training [14].

Considering the findings of [1,14], the classification accuracy for LM decoding algo-
rithms may increase when data from kinematic, kinetic, and/or EMG systems are fused.
The review [14] found that fusing data from EMG and IMU sensors is profitable since the
effect of the sensor position in the user’s limb (which affects the EMG signals recorded)
may be compensated by the position information provided by IMU sensors. Additionally,
as reported in [1], the accuracy of classification algorithms fed by data from IMU and
kinetic sensors is higher than those fed exclusively using IMUs. On the other hand, based
on the reviewed studies, classifiers that only used IMU sensors [5,9–12,32,34] achieve, in
general, similar classification accuracy to the ones that fused data from IMU sensors and
kinetic sensors (load cells [13,35], FSRs [4,31,57], and GRF sensors [30] embedded into the
assistive device). In some cases [5,10,32], the exclusive use of IMU sensors seems to provide
higher average accuracies when compared to the combination of IMUs and other sensors
(Figure 3b,c), which does not support the findings of [1]. The results of Figure 3b,c,d show
that it is possible to recognize the most daily performed LMs (ST, LW, SA, SD, RA, and RD
tasks) and the transitions between them (LW-SA, LW-SD, LW-RA, LW-RD, SA-LW, SD-LW,
RA-LW, and RD-LW) only using IMUs [5,9–12,32].

Although combining IMUs with other sensors does not seem to provide higher ac-
curacy, this combination seems to provide meaningful advances in terms of decoding
time. In [8], lower recognition delays were obtained by fusing kinematic (AHRS sensors
placed on the shank and foot segments) and kinetic (pressure insoles) sensors, adding the
ability to predict the LW task when preceded by the SA task and vice-versa. Moreover,
the fusion between pressure insoles with encoders typically embedded in the wearable
assistive device to measure the joint angles appears to contribute to the decoding of other
tasks and transitions, namely: SIT, ST, SIT-ST, ST-SIT, LW-ST, ST-LW, SA-ST, SD-ST, ST-SA,
and ST-SD. In addition to being an essential contribution to recognizing the referred tasks,
the fusion of pressure insoles with encoders in [6] allowed the ability to predict the SIT task
preceded by ST task and vice-versa before their occurrence.

Further, raw temporal data directly measured by the sensors were the most common
input data for LM decoding tools. Eight studies [2–6,13,30,31] used raw temporal data
extracted from sensors, namely: (i) hip, knee, and ankle joint angles depending on the
assisted joint [2,3,6,32]; (ii) inclination angles of the thigh, shank, and foot [4,13,31]; and
(iii) vertical position and velocity of the striking foot [3,13,31]. This may be related to the
time consumption associated with feature determination. The remaining studies used an
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analysis window to compute time- [5,7–12,34,35] (N = 9) and frequency-domain [8] (N = 1)
features. The dominance of time-domain over frequency-domain features was also reported
in [1]. It may be associated with the fact that the time-domain features are easier and faster
to be computed. The most used time-domain features were (i) the hip joint angles and CoP
at the heel-strike event [7]; (ii) maximum and minimum thigh, shank, and knee angles [5];
and (iii) maximum, minimum, mean, standard deviation, and root mean square of the
thigh and shank inclination angles and triaxial angular velocities and accelerations [9–12],
while the reported frequency-domain features were the (i) GRF during the swing phase [8]
and (ii) thigh and foot inclination angles [8].

According to the findings reported in [1], it is preferable to use windows with a length
varying between 100 and 250 ms when mechanical sensors (such as kinematic or kinetic)
are used. Based on the seven studies that presented information regarding the analysis
windows, various combinations were used: (i) window length of 100 ms with an increment
of 10 ms [34,35]; (ii) window length of 100 ms with an increment of 50 ms [32]; (iii) window
length of 150 ms with an increment of 10 ms [10]; (iv) window length of 200 ms with an
increment of 10 ms [8]; and (v) window length of 250 ms and an increment of 10 ms [11,12].
These findings align with those reported in [1] since the analysis windows match the range
from 100 to 250 ms.

4.3. Which Set of Algorithms Should Be Employed to Recognize/Predict Different LMs Attending
to Accuracy and Time-Effectiveness?

Generally, the algorithm’s performance for LM decoding is evaluated based on two
metrics: (i) the accuracy of the classification process and (ii) the recognition delay, which
represents the period between the instant in which the locomotion mode starts and the
instant in which that locomotion mode is recognized. Typically, this recognition delay is
evaluated as a percentage of a gait cycle, and it should be as low as possible [23]. Ideally, the
recognition delay would need to be negative, indicating that the motion task was predicted,
i.e., recognized before its occurrence.

The choice between each classifier depends on the purpose of each study. Attending
to the accuracy values presented in Table 2, the FSM, MFNN, and CNN may be the most
appropriate classifiers to decode static LMs, namely ST and SIT tasks, since until now, they
were the only algorithms applied for this purpose [6,7,9,11,12,34,35]. In addition, if the
goal is to distinguish static tasks and transitions between static tasks (ST, SIT, SIT-ST, and
ST-SIT), then it becomes more feasible to choose the FSM [6,7,9]. On the other hand, if the
goal is to distinguish continuous dynamic tasks, MFNN, FSM, and DT classifiers appear
to provide a higher capability (Figure 3a) [4,13,30,31]. Additionally, to decode continuous
dynamic tasks and static tasks together (ST, LW, SA, SD, RA, and RD), FSM or MFNN may
be preferable (Figure 3b) [3,11,12]. Otherwise, if the goal is to distinguish dynamic tasks
and transitions between dynamic tasks, the SVM, CNN, kNN, stacked autoencoder-based
deep neural network, or FSM may be employed [2,8–10,30,32] (Figure 3c). At last, to decode
static and continuous tasks and transitions between them, the FSM combined with the
SVM classifier may be the best option to take (Figure 3d) [9]. This different choice between
classifiers considering the LM to decode depends not only on the classifier performance
but also on the input information used. For example, CNN has the capacity to distinguish
dynamic tasks and transitions between them with high accuracy only when fed by IMUs
data. If CNN is fed by IMU, encoder, and GRF forces information together, the classification
accuracy seems to drop, as depicted in Figure 3c [30,32]. For this reason, the data used to
feed the algorithm present an important role in the algorithm’s performance.

Considering the recognition delay values stated in Table 2, most of the LMs were
recognized between 3.96% and 100% of the gait cycle in the new LM, which means that the
new LM is identified between 3.96% (after its beginning) and 100% (the end of the first gait
cycle) of the new LM. This phenomenon may cause perturbations during the assistance
due to the existent delay in identifying the new LM. Thus, timely assistance according
to the user’s needs may not be achieved. Nonetheless, there were four studies able to
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predict some tasks before their occurrence, in which the SVM classifier stands out [6,8–10],
achieving a prediction from 5.4 to 78.5 ms before the new LM [9,10]. Moreover, different
decoding times were achieved when the leading leg was with or without the wearable
assistive device. In [10], the SA and SD tasks preceded by the LW task were predicted
5.4 ± 74.6 ms and 78.5 ± 25.0 ms before their occurrence when the leading leg was the leg
without the wearable assistive device. In the same study [10], the SD task was predicted
by 1.8 ± 39.2 ms in advance, while the LW task was predicted 46.7 ± 46.6 ms before its
occurrence. These results support that the leading leg may affect the temporal performance
of the classifier.

4.4. How to Adapt the Exoskeleton/Orthosis Assistance According to the Decoded User’s LM

Considering the findings of this review, five studies adapted the assistance of the
wearable assistive device attending to the user’s decoded LM [4,7,9,32,33].

Based on the collected information, the provision of assistance mostly depends on both
ongoing LM and gait events, namely stance and swing phases or specific gait events, such
as heel-strike, heel-off, and toe-off. Two designs can be employed to adapt the wearable
assistive device assistance according to the decoded LM, namely a two-level [4,7,34] and
a three-level [9,32,33] hierarchical control. While in [4], a constant torque of 10 N.m was
provided by an ankle orthosis when the SD task was recognized, study [7] adapted the joint
torque trajectories from [42–45] according to the recognized tasks (SIT, ST, LW, SA, and SD
tasks and transitions between them). Apart from the difference in the torque trajectories,
the highest distinction between the control of [4] and [7] is that, while in [4], there was a
gait-phase estimation algorithm running before the LM recognition tool to provide features
for LM decoding, in [7], the gait-phase estimation algorithm was running after the LM
recognition to set the correct time to adapt the assisted torque. Thus, the development of LM
decoding tools dependent on preliminary gait algorithms may affect the recognition delay
and, consequently, the time compliance of the wearable assistive device’s control. This
phenomenon may be the reason for the one-step delay (100% of the gait cycle) exhibited
in [4], which is higher than the recognition delay presented in [7] (from 15.2 to 63.8% of
the gait cycle). Moreover, despite being a promising implementation, the feasibility of the
assistance provided in [7] may be compromised because adopting trajectories from the
literature should be done carefully since these trajectories depend on walking speed and
the user’s anthropometry [50]. According to [4], the ideality would be to have a library
with different trajectory profiles related to various motion tasks, walking speeds, and user’s
anthropometry embedded in the control scheme. This would be a valuable contribution to
selecting the required trajectory to assist the user according to their motion intentions.

In [9,32,33], a three-level hierarchical control architecture was followed. While in [32],
the high level presented a gait-phase estimation algorithm followed by the LM recognition
tool, in [9], the LM recognition tool was not dependent on the gait-phase detection algo-
rithm. As reported in the studies [4,7], the non-dependence of previous gait analysis tools
may explain the ability of the study [9] to predict some LMs (−78 ms to 38 ms), whereas
no prediction was reported in [10] (3.96 to 24 of the gait cycle). Regarding the mid-level,
different choices were made in each study, with the following being used: (i) a POILC
method for assisting the LW, SA, and SD tasks [32]; (ii) a hybrid torque method for assisting
the ST, LW, SA, and SD tasks [9]; and (iii) an EMG-based torque method for assisting the
LW task [33]. It is not possible to suggest a control scheme to assist a specific motion since
there is no benchmarking analysis of controllers’ performance when considering different
LMs. However, according to [52], a hybrid control approach should be adopted to assist the
user or reduce the constraints associated with the actuator’s frictions only when needed.

Providing efficient assistance according to the decoded user’s LM implies an accurate
and timely identification of the user’s intentions. This is of utmost importance since
the higher the anticipation time in identifying the LM, the more time remains to switch
the control to assist the users according to their needs timely. This means that, ideally,
the decoded LM should be recognized before its occurrence, i.e., predicted, to adapt the
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assistance according to the LM identified. Considering the five studies that adapt the
assistance according to the decoded LM, only one study [9] enables the prediction of the
LW-SA, SA-LW, LW-SD, and SD-LW transitions before their occurrence. This may be related
to the non-dependence of the LM recognition algorithm on gait event detection algorithms.

Current directions recommend the use of co-adaptive control assistance, named as the
“Assist-as-Needed” (AAN) approach, in which the patients are encouraged to participate
in the rehabilitation tasks, and the wearable assistive device only assists when and as much
as required, helping the users to accomplish a specific motion [58–60]. However, based on
the collected studies, even those that adapt the assistance according to the user’s motion
intention [4,7,9,32,33], no study followed an AAN approach. Thus, the adoption of the
current LM-driven control strategies during the rehabilitation of neurologically impaired
patients may be compromised.

4.5. Review Limitations

This study aims to present a systematic review regarding the state of LM decoding
tools when using wearable assistive devices, such as lower-limb AOs and exoskeletons.
Thus, studies in which the participants were not wearing any wearable assistive device (ex-
oskeletons or AOs) or using prosthetic systems were excluded. Additionally, the literature
search was performed using Scopus and Web of Science databases, including studies pub-
lished after 2010 and written in English. Therefore, there are possibly other studies before
2010 belonging to other databases and written in other languages that were not included.

Further, considering the studies that predicted some LMs, it was not possible to
present the accuracy value concerning the recognized and predicted LM separately since
the studies only provided the final mean value of the accuracy for all decoded LMs, covering
the recognized and the predicted ones [6,8–10].

4.6. Suggestions for Future Research

This review included 18 papers for LM recognition and prediction when using wear-
able assistive devices. Despite revealing meaningful improvements in this field, there is
room for new developments and improvements in an attempt to develop smarter exoskele-
tons and AOs for personalized assistance. Based on the findings reported in this review, we
report some highlights and suggestions to design time-effective LM decoding tools based
on meaningful data for real-time integration into robotic devices to adapt the assistance
according to the user’s intent.

Firstly, studies should develop and validate the decoding tools considering the con-
ditions used to deploy the developed tools with the end-users and in real environments.
However, most of the studies have tested their solutions in healthy subjects, exhibiting
insufficient clinical evidence. Since only one study [9] involved a pathological participant
in developing the LM decoding tool, it is not yet possible to guarantee the versatility and
feasibility of these tools when considering a pathological population. According to [7,14],
an algorithm for LM decoding developed for healthy gait patterns could be prone to fail-
ure when applied to pathological gait patterns because the biomechanics of pathological
patients (such as stroke patients) are modified due to their health status. This phenomenon
reinforces that the available solutions for LM decoding are not ready to support the daily
living of pathological patients when using wearable assistive devices.

Secondly, the available tools, even those that adapt the assistance of the wearable
assistive device considering the decoded LM, did not implement an AAN scheme in
which the wearable assistive device increases or decreases its contribution based on the
user’s motor performance. The absence of this seamless human–machine interaction may
not encourage the participation of neurologically impaired patients during rehabilitation
tasks. Thus, personalized assistance may not have been achieved yet. Therefore, it is
necessary to develop more studies with patients with lower-limb impairments walking at
their self-selected walking speeds, involving them in AAN control schemes.
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Thirdly, identifying transitions between several tasks when using a wearable assistive
device represents one of the main limitations of the current tools. Therefore, efforts should
address the lack of information in decoding the walking initiation and termination and the
ST-RA, RA-ST, ST-RD, and RD-ST transitions. Fourthly, until now, only the SA, LW, ST,
and SIT transitions were predicted before their occurrence when using wearable assistive
devices. Moreover, several tasks are recognized after their occurrence. This may introduce
delays in the LM decoding scheme, which may harm the provided assistance in relation
to real-time constraints. Thus, required innovations should tackle the emergent need for
developing user-independent and generic LM decoding tools that enable real-time motion
intention monitoring in free-living scenarios with high accuracy and a predictive character.
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Appendix A

The twelve criteria followed to perform the quality assessment of the studies were
based on [1,29], and they are stated below:

Criteria 1 (C1): Question/Objective sufficiently described?
Criteria 2 (C2): Study design evident and appropriate?
Criteria 3 (C3): Subject characteristics sufficiently described and representative?
Criteria 4 (C4): Experimental protocol sufficiently described?
Criteria 5 (C5): Sensors used and data collected clearly mentioned?
Criteria 6 (C6): Input features clearly mentioned?
Criteria 7 (C7): Window length clearly mentioned?
Criteria 8 (C8): Classification algorithm clearly mentioned?
Criteria 9 (C9): Evaluation method of the classification algorithm clearly mentioned?
Criteria 10 (C10): Control strategy clearly mentioned?
Criteria 11 (C11): Results reported with enough detail?
Criteria 12 (C12): Conclusions supported by the results?

A detailed description of each criterion is provided in Table A1.

Table A1. Detailed description of each criterion.

Criterion “Yes” = 2 “Partial” = 1 “No” = 0

C1: Question/Objective

The question and objective of the
study are clearly mentioned. They
are easily identified in the
introductory section (or first
paragraph of the Methods section).
Specifies all of the following:
purpose, target population, and the
specific intervention(s)/
association(s)/ descriptive
parameter(s) under investigation.

The question and the objective of
the study are not clearly mentioned.
Some information has to be
gathered from parts of the paper
other than the
introduction/background/
objective section.

The question and the objective of
the study are not reported.
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Table A1. Cont.

Criterion “Yes” = 2 “Partial” = 1 “No” = 0

C2: Study Design
Design is easily identified and is
appropriate to address the study
question/objective.

>Design and study question not
clearly identified;
>Design is easily identified but
only partially addresses the
study question.

>Design used does not answer
study question;
>Design cannot be identified.

C3: Subjects Characteristics

>Inclusion and exclusion criteria;
> Health condition;
>Number of volunteers;
>Gender;
>Age (mean and std);
>Height (mean and std);
>Weight (mean and std).

If at least one of these factors is not
specified:
>Inclusion and exclusion;
>Health condition;
>Number of volunteers;
>Mean and std of age, height,
or weight.

If all the topics in the “Partial”
section are not provided.

C4: Experimental Protocol

>Locomotion tasks addressed;
>Speed information (when
required);
>Number of trials.

If at least one of these factors is not
specified:
>Locomotion tasks addressed;
>Speed information (when
required. Slow, natural, and fast
speed counted for the “1” quote);
>Number of trials.

If all the topics in the “Partial”
section are not provided.

C5: Sensors and Data

>Sensors used;
>Information on the sensors’
positioning;
>Data collected.

If at least one of these factors is not
specified:
>Sensors used;
>Information on the sensors’
positioning;
>Data collected.

If all the topics in the “Partial”
section are not provided.

C6: Input Features

The features used are clearly
presented, even after the
application of feature reduction
techniques (such as PCA,
for example)

The features used are clearly
presented, but when feature
reduction techniques are applied,
the feature set is not specified

The extracted features are not
mentioned.
Note that if the raw data of the
sensors were fed into the
Classification Algorithm, the
criterion was rated 2 out of 2.

C7: Window Length

>Window length;
>Overlap/Window increment is
provided in the case of
multiple/sliding windows.

If at least one of these factors is not
specified:
>Window length;
>Window increment/overlap.

If all the topics in the “Partial”
section are not provided.

C8: Classification Algorithm The classification algorithms are
clearly mentioned.

The classification algorithms are
not clearly mentioned.

C9: Evaluation Method

The evaluation process of each
algorithm (such as the
cross-validation, only when used)
as well as the evaluation metrics
(such as Normalized Root Mean
Square Error (NRMSE)) used are
clearly mentioned.

>The evaluation process is
presented, but the parameters are
not given (such as the percentage
split between the train and test
sets);
>Visual comparisons without
presenting evaluation metrics are
presented;
If at least one of these factors is not
specified:
>Accuracy or NRMSE;
>Recognition delay.

If all the topics in the “Partial”
section are not provided.

C10: Control Strategy

>The control strategy implemented
in each wearable assistive device is
clearly mentioned and explained;
>The control parameters of the
wearable assistive device are
clearly mentioned.

If at least one of these factors is not
specified:
>The control strategy implemented
in each wearable assistive device is
clearly mentioned and explained;
>The control parameters of the
wearable assistive device are
clearly mentioned.

No information regarding the
control strategy is provided.

C11: Results
The results for each algorithm are
given (mean and
standard deviation)

The results for each algorithm are
given without the
standard deviation.

The mean and the standard
deviation are not given

C12: Conclusion
Conclusions are based on all results
relevant to the study question: the
negative as well as positive ones.

The conclusion is not supported by
the results.
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