7,105 research outputs found
Development of the Web Users Self-Efficacy scale (WUSE)
The aim of this research was to develop a scale that could evaluate an individuals confidence in using the Internet. Web-based resources are becoming increasingly important within higher education and it is therefore vital that students and staff feel confident and competent in the access, provision, and utilisation of these resources. The scale developed here represents an extension of previous research (Cassidy & Eachus, 2002) that developed a measure of self-efficacy in the context of computer use. An iterative approach was used in the development of the Web User Self-Efficacy scale (WUSE) and the participants were recruited from the student body of a large University
in the North West of the United Kingdom, and globally via a web site set up for this purpose. Initial findings suggest that the scale has acceptable standards of reliability and validity though work is continuing to refine the scale and improve the psychometric properties of the tool
Tannakian categories, linear differential algebraic groups, and parameterized linear differential equations
We provide conditions for a category with a fiber functor to be equivalent to
the category of representations of a linear differential algebraic group. This
generalizes the notion of a neutral Tannakian category used to characterize the
category of representations of a linear algebraic group.Comment: 26 pages; corrected misprints; simplified Definition 2; more
references adde
Tannakian approach to linear differential algebraic groups
Tannaka's Theorem states that a linear algebraic group G is determined by the
category of finite dimensional G-modules and the forgetful functor. We extend
this result to linear differential algebraic groups by introducing a category
corresponding to their representations and show how this category determines
such a group.Comment: 31 pages; corrected misprint
Creating and validating self-efficacy scales for students
Purpose: student radiographers must possess certain abilities to progress in their training; these can be assessed in various ways. Bandura’s social cognitive theory identifies self-efficacy as a key psychological construct with regard to how people adapt to environments where new skills are developed. Use of this construct is common in health care literature but little has been noted within radiographic literature. The authors sought to develop a self-efficacy scale for student radiographers.
Method: the scale was developed following a standard format. An initial pool of 80 items was generated and psychometric analysis was used to reduce this to 68 items. Radiography students drawn from 7 universities were participants (N=198) in validating the scale.
Results: the psychometric properties of the scale were examined using analysis of variance (ANOVA), factor analysis and item analysis. ANOVA demonstrated an acceptable level of known group validity: first-year, second-year, and third-year students all scored significantly differently (P=.035) from one another. Factor analysis identified the most significant factor as confidence in image appraisal. The scale was refined using item and factor analysis to produce the final 25-item scale.
Conclusion This is the first published domain-specific self-efficacy scale validated specifically for student radiographers. In its current format it may have pedagogical utility. The authors currently are extending the work to add to the scale’s validity and embedding it into student training to assess its predictive value
Investigation of additives for improvement of adhesive and elastomer performance Final report
Improvement additives for adhesive and elastomer performanc
In-vivo magnetic resonance imaging of hyperpolarized silicon particles
Silicon-based micro and nanoparticles have gained popularity in a wide range
of biomedical applications due to their biocompatibility and biodegradability
in-vivo, as well as a flexible surface chemistry, which allows drug loading,
functionalization and targeting. Here we report direct in-vivo imaging of
hyperpolarized 29Si nuclei in silicon microparticles by MRI. Natural physical
properties of silicon provide surface electronic states for dynamic nuclear
polarization (DNP), extremely long depolarization times, insensitivity to the
in-vivo environment or particle tumbling, and surfaces favorable for
functionalization. Potential applications to gastrointestinal, intravascular,
and tumor perfusion imaging at sub-picomolar concentrations are presented.
These results demonstrate a new background-free imaging modality applicable to
a range of inexpensive, readily available, and biocompatible Si particles.Comment: Supplemental Material include
Geophysical characterization of derelict coalmine workings and mineshaft detection: a case study from Shrewsbury, United Kingdom
A study site of derelict coalmine workings near Shrewsbury, United Kingdom was the focus for multi‐phase, near‐surface geophysical investigations. Investigation objectives were: 1) site characterization for remaining relict infrastructure foundations, 2) locate an abandoned coalmine shaft, 3) determine if the shaft was open, filled or partially filled and 4) determine if the shaft was capped (and if possible characterize the capping material).
Phase one included a desktop study and 3D microgravity modelling of the relict coalmine shaft thought to be on site. In phase two, electrical and electromagnetic surveys to determine site resistivity and conductivity were acquired together with fluxgate gradiometry and an initial microgravity survey. Phase three targeted the phase two geophysical anomalies and acquired high‐resolution self potential and ground penetrating radar datasets. The phased‐survey approach minimised site activity and survey costs.
Geophysical results were compared and interpreted to characterize the site, the microgravity models were used to validate interpretations. Relict buildings, railway track remains with associated gravel and a partially filled coalmine shaft were located. Microgravity proved optimal to locate the mineshaft with radar profiles showing ‘side‐swipe’ effects from the mineshaft that did not directly underlie survey lines.
Geophysical interpretations were then verified with subsequent geotechnical intrusive investigations. Comparisons of historical map records with intrusive geotechnical site investigations show care must be taken using map data alone, as the latter mineshaft locations was found to be inaccurate
- …
